1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Griffin R, Ramirez RA. Molecular targets in non-small cell lung cancer. Ochsner J, 2017, 17(4): 388-392.
|
3. |
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1): 1-10.
|
4. |
Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol, 2013, 34(11): 556-563.
|
5. |
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, 26: 677-704.
|
6. |
Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol, 2005, 25(21): 9543-9553.
|
7. |
Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother, 2007, 56(5): 739-745.
|
8. |
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med, 2012, 209(6): 1201-1217.
|
9. |
Patsoukis N, Brown J, Petkova V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal, 2012, 5(230): 46.
|
10. |
Escors D, Gato-Cañas M, Zuazo M, et al. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther, 2018, 3(1): 1-26.
|
11. |
Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol, 2015, 16(3): 257-265.
|
12. |
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med, 2015, 373(2): 123-135.
|
13. |
Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med, 2015, 373(17): 1627-1639.
|
14. |
Horn L, Spigel DR, Vokes EE, et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phaseⅢtrials (checkmate 017 and checkmate 057). J Clin Oncol, 2017, 35(35): 3924-3933.
|
15. |
Carbone DP, Reck M, Paz-Ares L, et al. First-line nivolumab in stageⅣor recurrent non-small-cell lung cancer. N Engl J Med, 2017, 376(25): 2415-2426.
|
16. |
Hellmann MD, Rizvi NA, Goldman JW, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol, 2017, 18(1): 31-41.
|
17. |
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med, 2018, 378(22): 2093-2104.
|
18. |
Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med, 2015, 372(21): 2018-2028.
|
19. |
Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet, 2016, 387(10027): 1540-1550.
|
20. |
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med, 2016, 375(19): 1823-1833.
|
21. |
Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet, 2019, 393(10183): 1819-1830.
|
22. |
Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol, 2016, 17(11): 1497-1508.
|
23. |
Borghaei H, Langer CJ, Gadgeel S, et al. 24-month overall survival from KEYNOTE-021 cohort G: Pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J Thorac Oncol, 2019, 14(1): 124-129.
|
24. |
Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med, 2018, 378(22): 2078-2092.
|
25. |
Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med, 2018, 379(21): 2040-2051.
|
26. |
Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528): 563-567.
|
27. |
Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030): 1837-1846.
|
28. |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066): 255-265.
|
29. |
Peters S, Gettinger S, Johnson ML, et al. PhaseⅡtrial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol, 2017, 35(24): 2781-2789.
|
30. |
Jotte RM, Cappuzzo F, Vynnychenko I, et al. IMpower 131: primary PFS and safety analysis of a randomized phaseⅢstudy of atezolizumab + carboplatin + paclitaxel or nab-paclitaxel vs carboplatin + nab-paclitaxel as 1L therapy in advanced squamous NSCLC. ASCO annual meeting, 2018.
|
31. |
Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med, 2018, 378(24): 2288-2301.
|
32. |
Antonia SJ. Durvalumab after chemoradiotherapy in stageⅢnon-small-cell lung cancer. Reply. N Engl J Med, 2019, 380(10): 990.
|
33. |
Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stageⅢNSCLC. N Engl J Med, 2018, 379(24): 2342-2350.
|
34. |
Planchard D, Yokoi T, McCleod MJ, et al. A PhaseⅢstudy of durvalumab (MEDI4736) with or without tremelimumab for previously treated patients with advanced NSCLC: Rationale and protocol design of the ARCTIC study. Clin Lung Cancer, 2016, 17(3): 232-236.
|
35. |
Antonia S, Goldberg SB, Balmanoukian A, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol, 2016, 17(3): 299-308.
|
36. |
Mahoney KM, Atkins MB. Prognostic and predictive markers for the new immunotherapies. Oncology (Williston Park), 2014, 28(3): 39-48.
|
37. |
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230): 124-128.
|
38. |
Hellmann MD, Nathanson T, Rizvi H, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell, 2018, 33(5): 843-852.
|
39. |
许莹. 肿瘤微环境中的树突状细胞. 癌症进展, 2016, 14(2): 118-120.
|
40. |
Lou Y, Diao L, Cuentas ER, et al. Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin Cancer Res, 2016, 22(14): 3630-3642.
|
41. |
Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov, 2013, 3(12): 1355-1363.
|
42. |
Chen N, Fang W, Zhan J, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol, 2015, 10(6): 910-923.
|
43. |
Rutledge WC, Kong J, Gao J, et al. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res, 2013, 19(18): 4951-4960.
|
44. |
Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel), 2016, 4(3): pii: E28.
|
45. |
Hu-Lieskovan S, Goldman JW, Han M, et al. High intratumoral T cell infiltration correlated with mutational load and response to pembrolizumab in non-small cell lung cancer. World Conference on Lung Cancer, 2015.
|
46. |
Schalper KA, Brown J, Carvajal-Hausdorf D, et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst, 2015, 107(3): dju435.
|
47. |
Garrido F, Cabrera T, Aptsiauri N. "Hard" and "soft" lesions underlying the HLA classⅠalterations in cancer cells: implications for immunotherapy. Int J Cancer, 2010, 127(2): 249-256.
|
48. |
Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med, 2012, 4(127): 127ra37.
|
49. |
Grah JJ, Katalinic D, Juretic A, et al. Clinical significance of immunohistochemical expression of cancer/testis tumor-associated antigens (MAGE-A1, MAGE-A3/4, NY-ESO-1) in patients with non-small cell lung cancer. Tumori, 2014, 100(1): 60-68.
|