1. |
Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol, 2006, (174): 249-282.
|
2. |
Brighton CT, Hunt RM. Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am, 1991, 73: 832-847.
|
3. |
Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood), 2001, 226(6): 507-520.
|
4. |
Sensebé L, Krampera M, Schrezenmeier H, et al. Mesenchymal stem cells for clinical application. Vox Sang, 2010, 98(2): 93-107.
|
5. |
Wang W, Jiang Q, Zhang H, et al. Intravenous administration of bone marrow mesenchymal stromal cells is safe for the lung in a chronic myocardial infarction model. Regen Med, 2011, 6(2): 179-190.
|
6. |
Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesen-chymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006, 12: 459-465.
|
7. |
Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesen-chymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 2005, 112: 1128-1135.
|
8. |
Eguchi T, Watanabe K, Hara ES, et al. OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells. PLoS One, 2013, 8(3): e58796.
|
9. |
Fakhry M, Hamade E, Badran B, et al. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells, 2013, 5: 136-148.
|
10. |
Lakshmipathy U, Hart RP. Concise review: microRNA expression in multipotent mesenchymal stromal cells. Stem Cells, 2008, 26: 356-363.
|
11. |
Sekar D, Hairul Islam VI, Thirugnanasambantham K, et al. Relevance of miR-21 in HIV and non-HIV-related lymphomas. Tumour Biol, 2014, 35(9): 8387-8393.
|
12. |
Mathieu J, Ruohola-Baker H. Regulation of stem cell populations by microRNAs. Adv Exp Med Biol, 2013, 786: 329-351.
|
13. |
Zou DD, Tang XB. Epithelial-mesenchymal transition and cancer stem cells. Zhonghua Bing Li Xue Za Zhi, 2013, 42: 62-65.
|
14. |
Zhang R, Wang D, Xia Z, et al. The role of microRNAs in adipocyte differentiation. Front Med, 2013, 7: 223-230.
|
15. |
Ceppi P, Peter ME. MicroRNAs regulate both epithelial-to-mesenchymal transition and cancer stem cells. Oncogene, 2014, 33(3): 269-278.
|
16. |
Kang HY. MicroRNA-21 regulates stemness in cancer cells. Stem Cell Res Ther, 2013, 4(5): 110.
|
17. |
Bakhshandeh B, Hafizi M, Ghaemi N, et al. Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol Lett, 2012, 34(8): 1579-1587.
|
18. |
Trohatou O, Zagoura D, Bitsika V, et al. Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med, 2014, 3(1): 54-68.
|
19. |
Mei Y, Bian C, Li J, et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem, 2013, 114(6): 1374-1384.
|
20. |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defning multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position statement. Cytotherapy, 2006, 8: 315-317.
|
21. |
Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968, 6: 230-247.
|
22. |
Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells, 2002, 20(3): 205-214.
|
23. |
Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001, 98(8): 2396-2402.
|
24. |
Martin DR, Cox NR, Hathcock TL, et al. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol, 2002, 30(8): 879-886.
|
25. |
Wakitani S, Saito T and Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 1995, 18: 1417-1426.
|
26. |
Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood), 2004, 229: 623-631.
|
27. |
Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest, 1999, 103(5): 697-705.
|
28. |
Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002, 105(1): 93-98.
|
29. |
Yoon J, Min BG, Kim YH, et al. Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol, 2005, 60(3): 277-284.
|
30. |
Xie XJ, Wang JA, Cao J, et al. Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin, 2006, 27: 1153-1158.
|
31. |
Forte G, Minieri M, Cossa P, et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells, 2006, 24(1): 23-33.
|
32. |
Yang N, Wang G, Hu C, et al. Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res, 2013, 28(3): 559-573.
|
33. |
Zhang Y, Jia J, Yang S, et al. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med, 2014, 46: e79.
|
34. |
Shin KK, Lee AL, Kim JY, et al. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo. Biochem Biophys Res Commun, 2012, 422(4): 633-638.
|
35. |
Sekar D, Saravanan S, Karikalan K, et al. Role of microRNA 21 in mesenchymal stem cell (MSC) differentiation: a powerful biomarker in MSCs derived cells. Curr Pharm Biotechnol, 2015, 16(1): 43-48.
|