- 1. Department of Cardiac Surgery, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, 510100, P.R. China;
- 2. Department of Cardiac Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, P.R. China;
Artificial intelligence belongs to the field of computer science. In the past few decades, artificial intelligence has shown broad application prospects in the medical field. With the development of computer technology in recent years, doctors and computer scientists have just begun to discover its potential for clinical application, especially in the field of congenital heart disease. Artificial intelligence now has been successfully applied to the prediction, intelligent diagnosis, medical image segmentation and recognition, clinical decision support of congenital heart disease. This article reviews the application of artificial intelligence in congenital cardiology.
Citation: XIE Wen, YAO Zeyang, QIU Hailong, XU Xiaowei, ZHUANG Jian. Artificial intelligence in congenital cardiology. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2020, 27(3): 343-353. doi: 10.7507/1007-4848.201911085 Copy
1. | Sissman NJ. Incidence of congenital heart disease. JAMA, 2001, 285(20): 2579-2580. |
2. | van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol, 2011, 58(21): 2241-2247. |
3. | 朱军, 周光萱, 代礼, 等. 1996~2000 年全国围产期先天性心脏病发生率的分析. 四川大学学报(医学版), 2004, 35(6): 875-877. |
4. | Mendis S, Puska P, Norrving B, et al. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organ, 2011. |
5. | Connor JM. Genetic disorders and the fetus. Diagnosis, prevention and treatment. J Med Genet, 1993, 30(4): 351. |
6. | Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol, 2002, 39(12): 1890-1900. |
7. | Marelli AJ, Ionescu-Ittu R, Mackie AS, et al. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation, 2014, 130(9): 749-756. |
8. | Diller G, Kempny A, Alonso-Gonzalez R, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation, 2015, 132(22): 2118-2125. |
9. | Yu C, Moore BM, Kotchetkova I, et al. Causes of death in a contemporary adult congenital heart disease cohort. Heart, 2018, 104(20): 1678-1682. |
10. | Oster ME, Strickland MJ, Mahle WT. Impact of prior hospital mortality versus surgical volume on mortality following surgery for congenital heart disease. J Thorac Cardiovasc Surg, 2011, 142(4): 882-886. |
11. | Apfeld JC, Kastenberg ZJ, Gibbons AT, et al. The disproportionate cost of operation and congenital anomalies in infancy. Surgery, 2019. |
12. | Russo CA, Elixhauser A. Hospitalizations for birth defects, 2004: Statistical Brief #24. Rockville: Agency for Healthcare Research and Quality. 2006. |
13. | 陈英耀, 张洁, 李军, 等. 先天性心脏病的疾病经济负担研究. 中华医院管理杂志, 2007, 23(11): 740-744. |
14. | 陈英耀. 我国主要出生缺陷的疾病负担和预防措施的经济学评价研究. 复旦大学, 2006. |
15. | Moore GE. Cramming more components onto integrated circuits. P IEEE, 1998, 86(1): 82-85. |
16. | Hinton GE, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput, 2006, 18(7): 1527-1554. |
17. | Mitchell TM. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 1997, 45(37): 870-877. |
18. | Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255-260. |
19. | McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys, 1943, 5(4): 115-133. |
20. | Hebb DO. The organization of behavior: a neuropsychological theory. Science Editions, 1962. |
21. | Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev, 1958, 65(6): 386. |
22. | Widrow B, Hoff ME. Adaptive switching circuits, in neurocomputing: foundations of research. Cambridge: MIT Press. 1988. 123-134. |
23. | Haykin S. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994. |
24. | Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks, 2015, 61: 85-117. |
25. | Bengio Y, Goodfellow I, Courville A. Deep learning. Citeseer, 2017. |
26. | Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1798-1828. |
27. | LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444. |
28. | Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform, 2017, 19(6): 1236-1246. |
29. | Najafabadi MM, Villanustre F, Khoshgoftaar TM, et al. Deep learning applications and challenges in big data analytics. J Big Data, 2015, 2(1): 1. |
30. | Haberl MG, Churas C, Tindall L, et al. CDeep3M-Plug-and-Play cloud-based deep learning for image segmentation. Nat Methods, 2018, 15(9): 677. |
31. | Sullivan DP, Winsnes CF, Åkesson L, et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat Biotechnol, 2018, 36(9): 820. |
32. | Strack R. Deep learning advances super-resolution imaging. Nat Methods, 2018, 15(6): 403. |
33. | Fang S, Tsao Y, Hsiao M, et al. Detection of pathological voice using cepstrum vectors: A deep learning approach. J Voice, 2019, 33(5): 634-641. |
34. | Chen MC, Ball RL, Yang L, et al. Deep learning to classify radiology free-text reports. Radiology, 2017, 286(3): 845-852. |
35. | Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Conference on empirical methods in natural language processing, 2014. |
36. | Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 2017, 318(22): 2211-2223. |
37. | Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology, 2017, 124(7): 962-969. |
38. | Zheng Q, Delingette H, Duchateau N, et al. 3-D consistent and robust segmentation of cardiac images by deep learning with spatial propagation. IEEE Trans Med Imaging, 2018, 37(9): 2137-2148. |
39. | Bejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 2017, 318(22): 2199-2210. |
40. | Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559. |
41. | Zhou J, Park CY, Theesfeld CL, et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet, 2019, 51(6): 973. |
42. | Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res, 2018, 24(6): 1248-1259. |
43. | Miotto R, Li L, Kidd BA, et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep-Uk, 2016, 6: 26094. |
44. | Liang H, Tsui BY, Ni H, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med, 2019, 25(3): 433. |
45. | Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science, 1959, 130(3366): 9-21. |
46. | Warner HR, Toronto AF, Veasy LG. Experience with Baye's theorem for computer diagnosis of congenital heart disease. Ann N Y Acad Sci, 1964, 115(2): 558-567. |
47. | Bleich HL. Computer-based consultation: electrolyte and acid-base disorders. Am J Med, 1972, 53(3): 285-291. |
48. | Lederberg J. DENDRAL-64: A system for computer construction, enumeration and notation of organic molecules as tree structures and cyclic graphs, Part Ⅱ: Topology of cyclic graphs. 1965. |
49. | Shortliffe EH. MYCIN: a rule-based computer program for advising physicians regarding antimicrobial therapy selection. Stanf Univ Calif Dept of Comput Sci, 1974. |
50. | Miller RA, Pople Jr HE, Myers JD. Internist-Ⅰ, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med, 1982, 307(8): 468-476. |
51. | Myers JD, Pople HE, Miller RA. CADUCEUS: a computerized diagnostic consultation system in internal medicine, 1982. Am Med Inform Assoc, 1982. |
52. | Kulikowski CA, Weiss SM. Representation of expert knowledge for consultation: the CASNET and EXPERT projects. Artif Intell Med, 1982: 51. |
53. | Miller RA. INTERNIST-1/CADUCEUS: problems facing expert consultant programs. Methods Inf Med, 1984, 23(1): 9-14. |
54. | Kawamoto K, Houlihan CA, Balas EA, et al. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ, 2005, 330(7494): 765. |
55. | Castaneda C, Nalley K, Mannion C, et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma, 2015, 5(1): 4. |
56. | Soufi MD, Samad-Soltani T, Vahdati SS, et al. Decision support system for triage management: A hybrid approach using rule-based reasoning and fuzzy logic. Int J Med Inform, 2018, 114: 35-44. |
57. | Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst, 2012, 36(5): 3029-3049. |
58. | Musen MA, Middleton B, Greenes RA. Clinical decision-support systems. Springer, 2014: 643-674. |
59. | Miller DD, Brown EW. Artificial intelligence in medical practice: The question to the answer? Am J Med, 2018, 131(2): 129-133. |
60. | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. |
61. | Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol, 2019, 20(5): e253-e261. |
62. | Reitinger B, Schmalstieg D, Bornik A, et al. Spatial analysis tools for virtual reality-based surgical planning, 2006. IEEE, 2006. |
63. | Mazzoni S, Badiali G, Lancellotti L, et al. Simulation-guided navigation: a new approach to improve intraoperative three-dimensional reproducibility during orthognathic surgery. J Craniofac Surg, 2010, 21(6): 1698-1705. |
64. | Li C, Cheung TF, Fan VC, et al. Applications of three-dimensional printing in surgery. Surg Innov, 2017, 24(1): 82-88. |
65. | McMenamin PG, Quayle MR, McHenry CR, et al. The production of anatomical teaching resources using three‐dimensional (3D) printing technology. Anat Sci Educ, 2014, 7(6): 479-486. |
66. | Malik HH, Darwood AR, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res, 2015, 199(2): 512-522. |
67. | Ledley RS, Lusted LB. The use of electronic computers to aid in medical diagnosis. Proc Inst Radio Eng, 1959, 47(11): 1970-1977. |
68. | Vanderplas JM. A method for determing probabilities for correct use of Bayes's theorem in medical diagnosis. Comput Biomed Res, 1967, 1(3): 215-220. |
69. | Johnson PE, Nachtsheim CJ, Zualkernan IA. Consultant expertise. Expert Syst, 1987, 4(3): 180-195. |
70. | Barschdorff D, Ester S, Dorsel T, et al. Phonographic diagnostic aid in heart defects using neural networks. Biomedizinische Technik. Biomed Eng, 1990, 35(11): 271-279. |
71. | Higuchi K, Sato K, Makuuchi H, et al. Automated diagnosis of heart disease in patients with heart murmurs: application of a neural network technique. J Med Eng Technol, 2006, 30(2): 61-68. |
72. | Kotb MA, Nabih H, El Zahraa F, et al. Improving the recognition of heart murmur. Int J Adv Comput Sci Appl, 2016, 7(7): 283-287. |
73. | Thompson WR, Reinisch AJ, Unterberger MJ, et al. Artificial intelligence-assisted auscultation of heart murmurs: validation by virtual clinical trial. Pediatr Cardiol, 2019, 40(3): 623-629. |
74. | Haghpanahi M, Borkholder DA. Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging. Physiol Meas, 2014, 35(8): 1591. |
75. | Yeo L, Romero R. Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol, 2013, 42(3): 268-284. |
76. | Warner HR, Toronto AF, Veasey LG, et al. A mathematical approach to medical diagnosis: application to congenital heart disease. JAMA, 1961, 177(3): 177-183. |
77. | Templeton AW, Lehr JL, Simmons C. The computer evaluation and diagnosis of congenital heart disease, using roentgenographic findings. Radiology, 1966, 87(4): 658-670. |
78. | Reale A, Maccacaro GA, Rocca E, et al. Computer diagnosis of congenital heart disease. Comput Biomed Res, 1968, 1(6): 533-549. |
79. | Timmers T, Dingemans PJ, Hess J. Smart classification system (SmaCS): design, implementation, and application for congenital heart disease terminology. Medinfo, 1995, 8: 167-171. |
80. | Vanisree K, Jyothi S. Decision support system for congenital heart disease diagnosis based on signs and symptoms using neural networks. Int J Comput Appl, 2011: 19. |
81. | Leãot FB, Rocha FA. Proposed methodology for knowledge acquisition: a study on congenital heart disease diagnosis. Methods Inf Med, 1990, 29(1): 30-40. |
82. | Reed NE, Gini M, Johnson PE, et al. Diagnosing congenital heart defects using the Fallot computational model. Artif Intell Med, 1997, 10(1): 25-40. |
83. | Reategui EB, Campbell JA, Leao BF. Combining a neural network with case-based reasoning in a diagnostic system. Artif Intell Med, 1997, 9(1): 5-27. |
84. | Moghimi F, Wickramasinghe N, Zadeh HS. An intelligence risk detection framework to improve decision efficiency in healthcare contexts: The example of pediatric congenital heart disease, 2011. IEEE, 2011. |
85. | Laitinen PO, Räsänen J. Measured versus predicted oxygen consumption in children with congenital heart disease. Heart, 1998, 80(6): 601-605. |
86. | von Rhein M, Buchmann A, Hagmann C, et al. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain, 2013, 137(1): 268-276. |
87. | Snookes SH, Gunn JK, Eldridge BJ, et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics, 2010, 125(4): e818-e827. |
88. | Bahado-Singh R, Vishweswaraiah S, Sayed N, et al. Deep learning/artificial intelligence and the epigenomic prediction of coarctation of the aorta. Am J Obstet Gynecol, 2019, 220(1). |
89. | Samad MD, Wehner GJ, Arbabshirani MR, et al. Predicting deterioration of ventricular function in patients with repaired tetralogy of Fallot using machine learning. Eur Heart J Cardiovasc Imaging, 2018, 19(7): 730-738. |
90. | Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst, 2012: 1097-1105. |
91. | Vitanovski D, Ralovich K, Ionasec R, et al. Personalized learning-based segmentation of thoracic aorta and main branches for diagnosis and treatment planning, 2012. IEEE, 2012. |
92. | Sanchez-Martinez S, Duchateau N, Erdei T, et al. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal, 2017, 35: 70-82. |
93. | Carneiro G, Nascimento JC, Freitas A. The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process, 2011, 21(3): 968-982. |
94. | Park J, Feng S, Zhou SK. Automatic computation of 2D cardiac measurements from B-mode echocardiography, 2012. Int Soc Opt Photonics, 2012. |
95. | Belous G, Busch A, Rowlands D. Segmentation of the left ventricle from ultrasound using random forest with active shape model, 2013. IEEE, 2013. |
96. | Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med, 2018, 1(1): 6. |
97. | Omar HA, Domingos JS, Patra A, et al. Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography, 2018. IEEE, 2018. |
98. | Raghavendra U, Fujita H, Gudigar A, et al. Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed Signal Process Control, 2018, 40: 324-334. |
99. | Shin H, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298. |
100. | Luo G, An R, Wang K, et al. A deep learning network for right ventricle segmentation in short-axis MRI, 2016. IEEE, 2016. |
101. | Tran PV. A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv: 1604.00494, 2016. |
102. | Wolterink JM, Leiner T, Viergever MA, et al. Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. Springer, 2016: 95-102. |
103. | Diller G, Babu-Narayan S, Li W, et al. Utility of machine learning algorithms in assessing patients with a systemic right ventricle. Eur Heart J Cardiovasc Imaging, 2019, 20(8): 925-931. |
104. | Cantinotti M, Valverde I, Kutty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging, 2017, 33(1): 137-144. |
105. | Ong CS, Krishnan A, Huang CY, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis, 2018, 13(3): 357-361. |
106. | Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson, 2018, 20(1): 65. |
107. | Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal, 2016, 30: 108-119. |
108. | Zreik M, Leiner T, De Vos BD, et al. Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks, 2016. IEEE, 2016. |
109. | Dormer JD, Ma L, Halicek M, et al. Heart chamber segmentation from CT using convolutional neural networks, 2018. Int Soc Opt Photonics, 2018. |
110. | Madani A, Ong JR, Tibrewal A, et al. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit Med, 2018, 1(1): 59. |
111. | Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin, 2019, 69(2): 127-157. |
112. | Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961. |
113. | Sobue T, Moriyama N, Kaneko M, et al. Screening for lung cancer with low-dose helical computed tomography: anti-lung cancer association project. J Clin Oncol, 2002, 20(4): 911-920. |
114. | National LSTR. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med, 2013, 368(21): 1980-1991. |
115. | Finlayson SG, Bowers JD, Ito J, et al. Adversarial attacks on medical machine learning. Science, 2019, 363(6433): 1287-1289. |
- 1. Sissman NJ. Incidence of congenital heart disease. JAMA, 2001, 285(20): 2579-2580.
- 2. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol, 2011, 58(21): 2241-2247.
- 3. 朱军, 周光萱, 代礼, 等. 1996~2000 年全国围产期先天性心脏病发生率的分析. 四川大学学报(医学版), 2004, 35(6): 875-877.
- 4. Mendis S, Puska P, Norrving B, et al. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organ, 2011.
- 5. Connor JM. Genetic disorders and the fetus. Diagnosis, prevention and treatment. J Med Genet, 1993, 30(4): 351.
- 6. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol, 2002, 39(12): 1890-1900.
- 7. Marelli AJ, Ionescu-Ittu R, Mackie AS, et al. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation, 2014, 130(9): 749-756.
- 8. Diller G, Kempny A, Alonso-Gonzalez R, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation, 2015, 132(22): 2118-2125.
- 9. Yu C, Moore BM, Kotchetkova I, et al. Causes of death in a contemporary adult congenital heart disease cohort. Heart, 2018, 104(20): 1678-1682.
- 10. Oster ME, Strickland MJ, Mahle WT. Impact of prior hospital mortality versus surgical volume on mortality following surgery for congenital heart disease. J Thorac Cardiovasc Surg, 2011, 142(4): 882-886.
- 11. Apfeld JC, Kastenberg ZJ, Gibbons AT, et al. The disproportionate cost of operation and congenital anomalies in infancy. Surgery, 2019.
- 12. Russo CA, Elixhauser A. Hospitalizations for birth defects, 2004: Statistical Brief #24. Rockville: Agency for Healthcare Research and Quality. 2006.
- 13. 陈英耀, 张洁, 李军, 等. 先天性心脏病的疾病经济负担研究. 中华医院管理杂志, 2007, 23(11): 740-744.
- 14. 陈英耀. 我国主要出生缺陷的疾病负担和预防措施的经济学评价研究. 复旦大学, 2006.
- 15. Moore GE. Cramming more components onto integrated circuits. P IEEE, 1998, 86(1): 82-85.
- 16. Hinton GE, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput, 2006, 18(7): 1527-1554.
- 17. Mitchell TM. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 1997, 45(37): 870-877.
- 18. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255-260.
- 19. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys, 1943, 5(4): 115-133.
- 20. Hebb DO. The organization of behavior: a neuropsychological theory. Science Editions, 1962.
- 21. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev, 1958, 65(6): 386.
- 22. Widrow B, Hoff ME. Adaptive switching circuits, in neurocomputing: foundations of research. Cambridge: MIT Press. 1988. 123-134.
- 23. Haykin S. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
- 24. Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks, 2015, 61: 85-117.
- 25. Bengio Y, Goodfellow I, Courville A. Deep learning. Citeseer, 2017.
- 26. Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1798-1828.
- 27. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
- 28. Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform, 2017, 19(6): 1236-1246.
- 29. Najafabadi MM, Villanustre F, Khoshgoftaar TM, et al. Deep learning applications and challenges in big data analytics. J Big Data, 2015, 2(1): 1.
- 30. Haberl MG, Churas C, Tindall L, et al. CDeep3M-Plug-and-Play cloud-based deep learning for image segmentation. Nat Methods, 2018, 15(9): 677.
- 31. Sullivan DP, Winsnes CF, Åkesson L, et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat Biotechnol, 2018, 36(9): 820.
- 32. Strack R. Deep learning advances super-resolution imaging. Nat Methods, 2018, 15(6): 403.
- 33. Fang S, Tsao Y, Hsiao M, et al. Detection of pathological voice using cepstrum vectors: A deep learning approach. J Voice, 2019, 33(5): 634-641.
- 34. Chen MC, Ball RL, Yang L, et al. Deep learning to classify radiology free-text reports. Radiology, 2017, 286(3): 845-852.
- 35. Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Conference on empirical methods in natural language processing, 2014.
- 36. Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 2017, 318(22): 2211-2223.
- 37. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology, 2017, 124(7): 962-969.
- 38. Zheng Q, Delingette H, Duchateau N, et al. 3-D consistent and robust segmentation of cardiac images by deep learning with spatial propagation. IEEE Trans Med Imaging, 2018, 37(9): 2137-2148.
- 39. Bejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 2017, 318(22): 2199-2210.
- 40. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559.
- 41. Zhou J, Park CY, Theesfeld CL, et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet, 2019, 51(6): 973.
- 42. Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res, 2018, 24(6): 1248-1259.
- 43. Miotto R, Li L, Kidd BA, et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep-Uk, 2016, 6: 26094.
- 44. Liang H, Tsui BY, Ni H, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med, 2019, 25(3): 433.
- 45. Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science, 1959, 130(3366): 9-21.
- 46. Warner HR, Toronto AF, Veasy LG. Experience with Baye's theorem for computer diagnosis of congenital heart disease. Ann N Y Acad Sci, 1964, 115(2): 558-567.
- 47. Bleich HL. Computer-based consultation: electrolyte and acid-base disorders. Am J Med, 1972, 53(3): 285-291.
- 48. Lederberg J. DENDRAL-64: A system for computer construction, enumeration and notation of organic molecules as tree structures and cyclic graphs, Part Ⅱ: Topology of cyclic graphs. 1965.
- 49. Shortliffe EH. MYCIN: a rule-based computer program for advising physicians regarding antimicrobial therapy selection. Stanf Univ Calif Dept of Comput Sci, 1974.
- 50. Miller RA, Pople Jr HE, Myers JD. Internist-Ⅰ, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med, 1982, 307(8): 468-476.
- 51. Myers JD, Pople HE, Miller RA. CADUCEUS: a computerized diagnostic consultation system in internal medicine, 1982. Am Med Inform Assoc, 1982.
- 52. Kulikowski CA, Weiss SM. Representation of expert knowledge for consultation: the CASNET and EXPERT projects. Artif Intell Med, 1982: 51.
- 53. Miller RA. INTERNIST-1/CADUCEUS: problems facing expert consultant programs. Methods Inf Med, 1984, 23(1): 9-14.
- 54. Kawamoto K, Houlihan CA, Balas EA, et al. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ, 2005, 330(7494): 765.
- 55. Castaneda C, Nalley K, Mannion C, et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma, 2015, 5(1): 4.
- 56. Soufi MD, Samad-Soltani T, Vahdati SS, et al. Decision support system for triage management: A hybrid approach using rule-based reasoning and fuzzy logic. Int J Med Inform, 2018, 114: 35-44.
- 57. Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst, 2012, 36(5): 3029-3049.
- 58. Musen MA, Middleton B, Greenes RA. Clinical decision-support systems. Springer, 2014: 643-674.
- 59. Miller DD, Brown EW. Artificial intelligence in medical practice: The question to the answer? Am J Med, 2018, 131(2): 129-133.
- 60. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
- 61. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol, 2019, 20(5): e253-e261.
- 62. Reitinger B, Schmalstieg D, Bornik A, et al. Spatial analysis tools for virtual reality-based surgical planning, 2006. IEEE, 2006.
- 63. Mazzoni S, Badiali G, Lancellotti L, et al. Simulation-guided navigation: a new approach to improve intraoperative three-dimensional reproducibility during orthognathic surgery. J Craniofac Surg, 2010, 21(6): 1698-1705.
- 64. Li C, Cheung TF, Fan VC, et al. Applications of three-dimensional printing in surgery. Surg Innov, 2017, 24(1): 82-88.
- 65. McMenamin PG, Quayle MR, McHenry CR, et al. The production of anatomical teaching resources using three‐dimensional (3D) printing technology. Anat Sci Educ, 2014, 7(6): 479-486.
- 66. Malik HH, Darwood AR, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res, 2015, 199(2): 512-522.
- 67. Ledley RS, Lusted LB. The use of electronic computers to aid in medical diagnosis. Proc Inst Radio Eng, 1959, 47(11): 1970-1977.
- 68. Vanderplas JM. A method for determing probabilities for correct use of Bayes's theorem in medical diagnosis. Comput Biomed Res, 1967, 1(3): 215-220.
- 69. Johnson PE, Nachtsheim CJ, Zualkernan IA. Consultant expertise. Expert Syst, 1987, 4(3): 180-195.
- 70. Barschdorff D, Ester S, Dorsel T, et al. Phonographic diagnostic aid in heart defects using neural networks. Biomedizinische Technik. Biomed Eng, 1990, 35(11): 271-279.
- 71. Higuchi K, Sato K, Makuuchi H, et al. Automated diagnosis of heart disease in patients with heart murmurs: application of a neural network technique. J Med Eng Technol, 2006, 30(2): 61-68.
- 72. Kotb MA, Nabih H, El Zahraa F, et al. Improving the recognition of heart murmur. Int J Adv Comput Sci Appl, 2016, 7(7): 283-287.
- 73. Thompson WR, Reinisch AJ, Unterberger MJ, et al. Artificial intelligence-assisted auscultation of heart murmurs: validation by virtual clinical trial. Pediatr Cardiol, 2019, 40(3): 623-629.
- 74. Haghpanahi M, Borkholder DA. Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging. Physiol Meas, 2014, 35(8): 1591.
- 75. Yeo L, Romero R. Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol, 2013, 42(3): 268-284.
- 76. Warner HR, Toronto AF, Veasey LG, et al. A mathematical approach to medical diagnosis: application to congenital heart disease. JAMA, 1961, 177(3): 177-183.
- 77. Templeton AW, Lehr JL, Simmons C. The computer evaluation and diagnosis of congenital heart disease, using roentgenographic findings. Radiology, 1966, 87(4): 658-670.
- 78. Reale A, Maccacaro GA, Rocca E, et al. Computer diagnosis of congenital heart disease. Comput Biomed Res, 1968, 1(6): 533-549.
- 79. Timmers T, Dingemans PJ, Hess J. Smart classification system (SmaCS): design, implementation, and application for congenital heart disease terminology. Medinfo, 1995, 8: 167-171.
- 80. Vanisree K, Jyothi S. Decision support system for congenital heart disease diagnosis based on signs and symptoms using neural networks. Int J Comput Appl, 2011: 19.
- 81. Leãot FB, Rocha FA. Proposed methodology for knowledge acquisition: a study on congenital heart disease diagnosis. Methods Inf Med, 1990, 29(1): 30-40.
- 82. Reed NE, Gini M, Johnson PE, et al. Diagnosing congenital heart defects using the Fallot computational model. Artif Intell Med, 1997, 10(1): 25-40.
- 83. Reategui EB, Campbell JA, Leao BF. Combining a neural network with case-based reasoning in a diagnostic system. Artif Intell Med, 1997, 9(1): 5-27.
- 84. Moghimi F, Wickramasinghe N, Zadeh HS. An intelligence risk detection framework to improve decision efficiency in healthcare contexts: The example of pediatric congenital heart disease, 2011. IEEE, 2011.
- 85. Laitinen PO, Räsänen J. Measured versus predicted oxygen consumption in children with congenital heart disease. Heart, 1998, 80(6): 601-605.
- 86. von Rhein M, Buchmann A, Hagmann C, et al. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain, 2013, 137(1): 268-276.
- 87. Snookes SH, Gunn JK, Eldridge BJ, et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics, 2010, 125(4): e818-e827.
- 88. Bahado-Singh R, Vishweswaraiah S, Sayed N, et al. Deep learning/artificial intelligence and the epigenomic prediction of coarctation of the aorta. Am J Obstet Gynecol, 2019, 220(1).
- 89. Samad MD, Wehner GJ, Arbabshirani MR, et al. Predicting deterioration of ventricular function in patients with repaired tetralogy of Fallot using machine learning. Eur Heart J Cardiovasc Imaging, 2018, 19(7): 730-738.
- 90. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst, 2012: 1097-1105.
- 91. Vitanovski D, Ralovich K, Ionasec R, et al. Personalized learning-based segmentation of thoracic aorta and main branches for diagnosis and treatment planning, 2012. IEEE, 2012.
- 92. Sanchez-Martinez S, Duchateau N, Erdei T, et al. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal, 2017, 35: 70-82.
- 93. Carneiro G, Nascimento JC, Freitas A. The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process, 2011, 21(3): 968-982.
- 94. Park J, Feng S, Zhou SK. Automatic computation of 2D cardiac measurements from B-mode echocardiography, 2012. Int Soc Opt Photonics, 2012.
- 95. Belous G, Busch A, Rowlands D. Segmentation of the left ventricle from ultrasound using random forest with active shape model, 2013. IEEE, 2013.
- 96. Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med, 2018, 1(1): 6.
- 97. Omar HA, Domingos JS, Patra A, et al. Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography, 2018. IEEE, 2018.
- 98. Raghavendra U, Fujita H, Gudigar A, et al. Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed Signal Process Control, 2018, 40: 324-334.
- 99. Shin H, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298.
- 100. Luo G, An R, Wang K, et al. A deep learning network for right ventricle segmentation in short-axis MRI, 2016. IEEE, 2016.
- 101. Tran PV. A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv: 1604.00494, 2016.
- 102. Wolterink JM, Leiner T, Viergever MA, et al. Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. Springer, 2016: 95-102.
- 103. Diller G, Babu-Narayan S, Li W, et al. Utility of machine learning algorithms in assessing patients with a systemic right ventricle. Eur Heart J Cardiovasc Imaging, 2019, 20(8): 925-931.
- 104. Cantinotti M, Valverde I, Kutty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging, 2017, 33(1): 137-144.
- 105. Ong CS, Krishnan A, Huang CY, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis, 2018, 13(3): 357-361.
- 106. Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson, 2018, 20(1): 65.
- 107. Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal, 2016, 30: 108-119.
- 108. Zreik M, Leiner T, De Vos BD, et al. Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks, 2016. IEEE, 2016.
- 109. Dormer JD, Ma L, Halicek M, et al. Heart chamber segmentation from CT using convolutional neural networks, 2018. Int Soc Opt Photonics, 2018.
- 110. Madani A, Ong JR, Tibrewal A, et al. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit Med, 2018, 1(1): 59.
- 111. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin, 2019, 69(2): 127-157.
- 112. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
- 113. Sobue T, Moriyama N, Kaneko M, et al. Screening for lung cancer with low-dose helical computed tomography: anti-lung cancer association project. J Clin Oncol, 2002, 20(4): 911-920.
- 114. National LSTR. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med, 2013, 368(21): 1980-1991.
- 115. Finlayson SG, Bowers JD, Ito J, et al. Adversarial attacks on medical machine learning. Science, 2019, 363(6433): 1287-1289.