1. |
Nazzari H, Chue CD, Toma M. Mechanical circulatory support in the heart failure population. Curr Opin Cardiol, 2019, 34(2): 194-201.
|
2. |
Hetzer R, Kaufmann MEng F, Potapov E, <italic>et al</italic>. Rotary blood pumps as long-term mechanical circulatory support: A review of a 15-year Berlin experience. Semin Thorac Cardiovasc Surg, 2016, 28(1): 12-23.
|
3. |
张岩, 孙寒松, 胡盛寿. 左心室辅助血泵及其临床应用研究进展. 中国胸心血管外科临床杂志, 2017, 24(2): 152-155.
|
4. |
Chen Z, Zhang J, Kareem K, <italic>et al</italic>. Device-induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding. Artif Organs, 2019, 43(8): 745-755.
|
5. |
Kittipibul V, Xanthopoulos A, Hurst TE, <italic>et al</italic>. Clinical courses of HeartMateⅡleft ventricular assist device thrombosis. ASAIO J, 2020, 66(2): 153-159.
|
6. |
Selzman CH, Koliopoulou A, Glotzbach JP, <italic>et al</italic>. Evolutionary improvements in the Jarvik 2000 left ventricular assist device. ASAIO J, 2018, 64(6): 827-830.
|
7. |
Dang G, Epperla N, Mupiddi V, <italic>et al</italic>. Medical management of pump related thrombosis in patients with continuous flow left ventricular assist devices: a systematic review and meta-analysis. ASAIO J, 2017, 63(4): 373-385.
|
8. |
Koliopoulou A, McKellar SH, Rondina M, <italic>et al</italic>. Bleeding and thrombosis in chronic VAD therapy: focus on platelets. Curr Opin Cardiol, 2016, 31(3): 299-307.
|
9. |
Morici N, Varrenti M, Brunelli D, <italic>et al</italic>. Antithrombotic therapy in ventricular assist device (VAD) management: From ancient beliefs to updated evidence. A narrative review. Int J Cardiol Heart Vasc, 2018, 20: 20-26.
|
10. |
Kapur NK, Vest AR, Cook J, <italic>et al</italic>. Pump thrombosis: A limitation of contemporary left ventricular assist devices. Curr Probl Cardiol, 2015, 40(12): 511-540.
|
11. |
Uriel N, Han J, Morrison KA, <italic>et al</italic>. Device thrombosis in HeartMateⅡcontinuous-flow left ventricular assist devices: A multifactorial phenomenon. J Heart Lung Transplant, 2014, 33(1): 51-59.
|
12. |
余佳佳. 基于溶凝血分析的轴流血泵转子外形优化设计. 清华大学, 2016.
|
13. |
吴广辉, 蔺嫦燕, 侯晓彤, 等. 绵羊植入左心室辅助装置在体实验手术管理. 首都医科大学学报, 2015, 36(2): 291-298.
|
14. |
Grover SP, Mackman N. Tissue factor: An essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol, 2018, 38(4): 709-725.
|
15. |
Gorbet M, Sperling C, Maitz MF, <italic>et al</italic>. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater, 2019, 94: 25-32.
|
16. |
Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25(26): 5681-5703.
|
17. |
Spanier T, Oz M, Levin H, <italic>et al</italic>. Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg, 1996, 112(4): 1090-1097.
|
18. |
Mehrabadi M, Ku DN, Champion JA, et al. Effects of red blood cells and shear rate on thrombus growth. Georgia Institute of Technology, 2014.
|
19. |
侯丽, 乔春霞, 赵增琳. 解读ISO 10993-4:2017《医疗器械生物学评价第4部分:与血液相互作用试验选择》. 中国医疗设备, 2018, 33(11): 1-6.
|
20. |
Maruyama O, Numata Y, Nishida M, <italic>et al</italic>. Hemolysis caused by surface roughness under shear flow. J Artif Organs, 2005, 8(4): 228-236.
|
21. |
方媛. 心脏泵流道内表面加工形貌对血液兼容性影响的研究. 哈尔滨理工大学, 2018.
|
22. |
Jokinen V, Kankuri E, Hoshian S, <italic>et al</italic>. Superhydrophobic blood-repellent surfaces. Adv Mater, 2018, 30(24): e1705104.
|
23. |
李卫东. 离心式人工心脏泵血流动力学特性分析与优化研究. 哈尔滨工业大学, 2016.
|
24. |
李驰培, 杨秀萍, 陈俊, 等. 轴流血泵流场分析与结构改进. 制造业自动化, 2018, 40(11): 49-52.
|
25. |
Mehra MR, Stewart GC, Uber PA. The vexing problem of thrombosis in long-term mechanical circulatory support. J Heart Lung Transplant, 2014, 33(1): 1-11.
|
26. |
Bouchnita A, Volpert V. A multiscale model of platelet-fibrin thrombus growth in the flow. Comput Fluids, 2019, 184: 10-20.
|
27. |
Yazdani A, Li H, Humphrey JD, <italic>et al</italic>. A General shear-dependent model for thrombus formation. PLoS Comput Biol, 2017, 13(1): e1005291.
|
28. |
Leiderman K, Fogelson A. An overview of mathematical modeling of thrombus formation under flow. Thromb Res, 2014, 133(Suppl 1): S12-S14.
|
29. |
Giersiepen M, Wurzinger LJ, Opitz R, <italic>et al</italic>. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves. Int J Artif Organs, 1990, 13(5): 300-306.
|
30. |
Boreda R, Fatemi RS, Rittgers SE. Potential for platelet stimulation in critically stenosed carotid and coronary arteries. J Vasc Invest, 1995, 1: 26-37.
|
31. |
Faghih MM, Sharp MK. Extending the power-law hemolysis model to complex flows. J Biomech Eng, 2016, 138(12): 10.1115/1.4034786.
|
32. |
Sheriff J, Soares JS, Xenos M, <italic>et al</italic>. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng, 2013, 41(6): 1279-1296.
|
33. |
Hosseinzadegan H, Tafti DK. Modeling thrombus formation and growth. Biotechnol Bioeng, 2017, 114(10): 2154-2172.
|
34. |
Sorensen EN, Burgreen GW, Wagner WR, <italic>et al</italic>. Computational simulation of platelet deposition and activation:Ⅰ. Model development and properties. Ann Biomed Eng, 1999, 27(4): 436-448.
|
35. |
Sorensen EN, Burgreen GW, Wagner WR, <italic>et al</italic>. Computational simulation of platelet deposition and activation:Ⅱ. Results for Poiseuille flow over collagen. Ann Biomed Eng, 1999, 27(4): 449-458.
|
36. |
Taylor JO, Yang L, Deutsch S, <italic>et al</italic>. Development of a platelet adhesion transport equation for a computational thrombosis model. J Biomech, 2017, 50: 114-120.
|
37. |
Jamiolkowski MA, Woolley JR, Kameneva MV, <italic>et al</italic>. Real time visualization and characterization of platelet deposition under flow onto clinically relevant opaque surfaces. J Biomed Mater Res A, 2015, 103(4): 1303-1311.
|
38. |
Wu WT, Jamiolkowski MA, Wagner WR, <italic>et al</italic>. Multi-constituent simulation of thrombus deposition. Sci Rep, 2017, 7: 42720.
|
39. |
Lee S, Cho Y, Kang S, <italic>et al</italic>. Evaluation of an extended viscoelastic model to predict hemolysis in cannulas and blood pumps. J Mech Sci Tec, 2019, 33(5): 2181-2188.
|
40. |
Topper SR, Navitsky MA, Medvitz RB, et al. The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs. Cardiovasc Eng Technol, 2014, 5(1):54-69.
|
41. |
Sin DC, Kei HL, Miao X. Surface coatings for ventricular assist devices. Expert Rev Med Device, 2009, 6(1): 51-60.
|
42. |
Kustosz R, Altyntsev I, Darlak M, <italic>et al</italic>. The TiN coatings utilisation as blood contact surface modification in implantable rotary left ventricle assist device Religaheart Rot. Arch Metal Mater, 2015, 60(3): 2253-2260.
|
43. |
Zeng H, Jarvik R, Catausan G, <italic>et al</italic>. Diamond coated artificial cardiovascular devices. Surf Coat Technol, 2016, 302: 420-425.
|
44. |
Werkkala K, Jokinen JJ, Soininen L, <italic>et al</italic>. Clinical durability of the CARMEDA BioActive surface in EXCOR ventricular assist device pumps. ASAIO J, 2016, 62(2): 139-142.
|
45. |
Biran R, Pond D. Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliv Rev, 2017, 112: 12-23.
|
46. |
Chen L, Han D, Jiang L. On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloids Surf B Biointerfaces, 2011, 85(1): 2-7.
|
47. |
Xiang L, Li J, He Z, <italic>et al</italic>. Design and construction of TiO<sub>2</sub> nanotubes in microarray using two-step anodic oxidation for application of cardiovascular implanted devices. Micro Nano Lett, 2015, 10(6): 287-291.
|
48. |
Karaman O, Kelebek S, Demirci EA, <italic>et al</italic>. Synergistic effect of cold plasma treatment and RGD peptide coating on cell proliferation over titanium surfaces. Tissue Eng Regen Med, 2017, 15(1): 13-24.
|
49. |
Li G, Yang P, Liao Y, <italic>et al</italic>. Tailoring of the titanium surface by immobilization of heparin/fibronectin complexes for improving blood compatibility and endothelialization: an in vitro study. Biomacromolecules, 2011, 12(4): 1155-1168.
|
50. |
Thamsen B, Mevert R, Lommel M, <italic>et al</italic>. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study. Int J Artif Organs, 2016, 39(4): 178-183.
|
51. |
周冰晶, 张桂杰, 荆腾, 等. 心衰脉动过程两级轴流血泵溶血数值模拟. 排灌机械工程学报, 2018, 36(1): 28-34.
|
52. |
陈彬彬, 曹中清, 何林峰. 轴流血泵的数值仿真与结构改进. 机床与液压, 2017, 45(17): 171-175.
|