1. |
Evangelista A, Isselbacher EM, Bossone E, <italic>et al</italic>. Insights from the International Registry of Acute Aortic Dissection: A 20-year experience of collaborative clinical research. Circulation, 2018, 137(17): 1846-1860.
|
2. |
Maslen CL, Corson GM, Maddox BK, <italic>et al</italic>. Partial sequence of a candidate gene for the Marfan syndrome. Nature, 1991, 352(6333): 334-337.
|
3. |
Renard M, Francis C, Ghosh R, <italic>et al</italic>. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol, 2018, 72(6): 605-615.
|
4. |
Jondeau G, Ropers J, Regalado E, <italic>et al</italic>. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet, 2016, 9(6): 548-558.
|
5. |
Lee VS, Halabi CM, Hoffman EP, <italic>et al</italic>. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci USA, 2016, 113(31): 8759-8764.
|
6. |
Guo DC, Regalado ES, Gong L, <italic>et al</italic>. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res, 2016, 118(6): 928-934.
|
7. |
Quiñones-Pérez B, VanNoy GE, Towne MC, <italic>et al</italic>. Three-generation family with novel contiguous gene deletion on chromosome 2p22 associated with thoracic aortic aneurysm syndrome. Am J Med Genet, 2018, 176(3): 560-569.
|
8. |
Guo DC, Regalado ES, Pinard A, <italic>et al</italic>. LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections. Am J Hum Genet, 2018, 102(4): 706-712.
|
9. |
Gould RA, Aziz H, Woods CE, <italic>et al</italic>. ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet, 2019, 51(1): 42-50.
|
10. |
Tan KL, Haelterman NA, Kwartler CS, <italic>et al</italic>. Ari-1 regulates myonuclear organization together with parkin and is associated with aortic aneurysms. Dev Cell, 2018, 45(2): 226-244.
|
11. |
Kuang SQ, Medina-Martinez O, Guo DC, <italic>et al</italic>. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Investig, 2016, 126(3): 948-961.
|
12. |
Koenig SN, LaHaye S, Feller JD, <italic>et al</italic>. Notch1 haploinsuciency causes ascending aortic aneurysms in mice. JCI Insight, 2017, 2(21): 91353.
|
13. |
Cortini F, Marinelli B, Seia M, <italic>et al</italic>. Next-generation sequencing and a novel COL3A1 mutation associated with vascular Ehlers-Danlos syndrome with severe intestinal involvement: A case report. J Med Case Rep, 2016, 10(1): 303.
|
14. |
Legrand A, Devriese M, Dupuis-Girod S, <italic>et al</italic>. Frequency of de novo variants and parental mosaicism in vascular Ehlers-Danlos syndrome. Genet Med, 2019, 21(7): 1568-1575.
|
15. |
An Z, Liu Y, Song ZG, <italic>et al</italic>. Mechanisms of aortic dissection smooth muscle cell phenotype switch. J Thorac Cardiovasc Surg, 2017, 154(5): 1511-1521.
|
16. |
杨航, 罗明尧, 马艳云, 等. 遗传性胸主动脉瘤/夹层基因检测及临床诊疗专家共识. 中国循环杂志, 2019, 34(4): 319-325.
|
17. |
Meester JA, Vandeweyer G, Pintelon I, <italic>et al</italic>. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med, 2017, 19(4): 386-395.
|
18. |
Ostberg Nicolai P, Zafar Mohammad A, Ziganshin Bulat A, <italic>et al</italic>. The genetics of thoracic aortic aneurysms and dissection: A clinical perspective. Biomolecules, 2020, 10(2): 182.
|
19. |
Sandeep K, Boon Reinier A, Lars M, <italic>et al</italic>. Role of noncoding RNAs in the pathogenesis of abdominal aortic aneurysm. Circ Res, 2019, 124(4): 619-630.
|
20. |
Dong J, Bao JM, Feng R, <italic>et al</italic>. Circulating microRNAs: a novel potential biomarker for diagnosing acute aortic dissection. Sci Rep, 2017, 7(1): 12784.
|
21. |
Gao P, Si JY, Yang B, <italic>et al</italic>. Upregulation of microRNA-15a contributes to pathogenesis of abdominal aortic aneurysm (AAA) by modulating the expression of cyclin-dependent kinase isnhibitor 2B (CDKN2B). Med Sci Monit, 2017, 23: 881-888.
|
22. |
Naoyuki K, Kyoko F, Mamoru A, <italic>et al</italic>. Gene expression profiling of acute type A aortic dissection combined with in vitro assessment. Eur J Cardiothorac Surg, 2017, 52(4): 810-817.
|
23. |
Huang WH, Huang C, Ding HY, <italic>et al</italic>. Involvement of miR-145 in the development of aortic dissection via inducing proliferation, migration, and apoptosis of vascular smooth muscle cells. J Clin Lab Anal, 2020, 34(1): e23028.
|
24. |
Li TB, Liu CC, Liu LC, <italic>et al</italic>. Regulatory msechanism of microRNA-145 in the pathogenesis of acute aortic dissection. Yonsei Med J, 2019, 60(4): 352-359.
|
25. |
Eftihia S, Panagiota G. MicroRNAs in acute aortic dissection. J Thorac Dis, 2018, 10(3): 1256-1257.
|
26. |
Climent M, Quintavalle M, Miragoli M, <italic>et al</italic>. TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res, 2015, 116(11): 1753.
|
27. |
Li Y, Yang N, Zhou XB, <italic>et al</italic>. LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human thoracic aortic dissection. Mol Med Rep, 2018, 18(3): 3167-3176.
|
28. |
He Q, Tan JY, Yu Bo, <italic>et al</italic>. Long noncoding RNA HIF1A-AS1A reduces apoptosis of vascular smooth muscle cells: implications for the pathogenesis of thoracoabdominal aorta aneurysm. Pharmazie, 2015, 70(5): 310-315.
|
29. |
Sun J, Chen GJ, Jing YW, <italic>et al</italic>. LncRNA expression profile of human thoracic aortic dissection by high-throughput sequencing. Cell Physiol Biochem, 2018, 46(3): 1027-1041.
|
30. |
Zou MH, Huang CX, Li XZ, <italic>et al</italic>. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection. Oncotarget, 2017, 8(47): 81825-81837.
|
31. |
Tian CC, Tang XL, Zhu XY, <italic>et al</italic>. Expression profiles of circRNAs and the potential diagnostic value of serum circMARK3 in human acute Stanford type A aortic dissection. PLoS One, 2019, 14(6): e0219013.
|
32. |
Tugce S, Arzu A, Tuba G. Potential function of microRNAs in thoracic aortic aneurysm and thoracic aortic dissection pathogenesis. Mol Med Rep, 2019, 20(6): 5353-5362.
|
33. |
Zeng T, Yuan J, Gan JT, <italic>et al</italic>. Thrombospondin 1 is increased in the aorta and plasma of patients with acute aortic dissection. Can J Cardiol, 2019, 35(1): 42-50.
|
34. |
Yang WG, Wen DZ, Chen SX, <italic>et al</italic>. The expression of nsesprin-1 increased in aortic dissection: why? J Thorac Dis, 2019, 11(12): 4960-4965.
|
35. |
Fan FD, Zhou Q, Pan J, <italic>et al</italic>. Preliminary observation of chemokine expression in patients with Stanford type A aortic dissection. Cytokine, 2020, 127: 154920.
|
36. |
Liao MF, Zou SL, Bao Y, <italic>et al</italic>. Matrix metalloproteinases are regulated by MicroRNA 320 in macrophages and are associated with aortic dissection. Exp Cell Res, 2018, 370(1): 98-102.
|
37. |
Milewicz Dianna M, Trybus Kathleen M, Guo DC, <italic>et al</italic>. Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol, 2017, 37(1): 26-34.
|
38. |
Brownstei AJ, Kostiuk V, Ziganshin BA, <italic>et al</italic>. Genes associated with thoracic aortic aneurysm and dissection: 2018 update and clinical implications. Aorta, 2018, 6(1): 13-20.
|
39. |
Milewicz D, Hostetler E, Wallace S, <italic>et al</italic>. Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg, 2016, 57(2): 172-177.
|