1. |
Kadota K, Nitadori JI, Sima CS, et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage Ⅰ lung adenocarcinomas. J Thorac Oncol, 2015, 10(5): 806-814.
|
2. |
Warth A, Beasley MB, Mino-Kenudson M. Breaking new ground: The evolving concept of spread through air spaces (STAS). J Thorac Oncol, 2017, 12(2): 176-178.
|
3. |
Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol, 2015, 10(9): 1243-1260.
|
4. |
Shiono S, Yanagawa N. Spread through air spaces is a predictive factor of recurrence and a prognostic factor in stageⅠ lung adenocarcinoma. Interact Cardiovasc Thorac Surg, 2016, 23(4): 567-572.
|
5. |
Uruga H, Fujii T, Fujimori S, et al. Semiquantitative assessment of tumor spread through air spaces (STAS) in early-stage lung adenocarcinomas. J Thorac Oncol, 2017, 12(7): 1046-1051.
|
6. |
Kadota K, Kushida Y, Kagawa S, et al. Limited resection is associated with a higher risk of locoregional recurrence than lobectomy in stageⅠ lung adenocarcinoma with tumor spread through air spaces. Am J Surg Pathol, 2019, 43(8): 1033-1041.
|
7. |
Toyokawa G, Yamada Y, Tagawa T, et al. Significance of spread through air spaces in resected pathological stageⅠ lung adenocarcinoma. Ann Thorac Surg, 2018, 105(6): 1655-1663.
|
8. |
Eguchi T, Kameda K, Lu S, et al. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: A propensity score-matched analysis. J Thorac Oncol, 2019, 14(1): 87-98.
|
9. |
Tsutani Y, Miyata Y, Nakayama H, et al. Appropriate sublobar resection choice for ground glass opacity-dominant clinical stageⅠA lung adenocarcinoma: Wedge resection or segmentectomy. Chest, 2014, 145(1): 66-71.
|
10. |
Warth A. Spread through air spaces (STAS): A comprehensive update. Transl Lung Cancer Res, 2017, 6(5): 501-507.
|
11. |
Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J Thorac Oncol, 2016, 11(1): 39-51.
|
12. |
Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol, 2011, 6(2): 244-285.
|
13. |
Shimosato Y, Suzuki A, Hashimoto T, et al. Prognostic implications of fibrotic focus (Scar) in small peripheral lung cancers. Am J Surg Pathol, 1980, 4(4): 365-373.
|
14. |
Collins J, Stern EJ. Ground-glass opacity at CT: The ABCs. AJR Am J Roentgenol, 1997, 169(2): 355-367.
|
15. |
Song SH, Ahn JH, Lee HY, et al. Prognostic impact of nomogram based on whole tumour size, tumour disappearance ratio on CT and SUVmax on PET in lung adenocarcinoma. Eur Radiol, 2016, 26(6): 1538-1546.
|
16. |
Heidinger BH, Anderson KR, Nemec U, et al. Lung adenocarcinoma manifesting as pure ground-glass nodules: Correlating CT size, volume, density, and roundness with histopathologic invasion and size. J Thorac Oncol, 2017, 12(8): 1288-1298.
|
17. |
Toyokawa G, Yamada Y, Tagawa T, et al. Computed tomography features of resected lung adenocarcinomas with spread through air spaces. J Thorac Cardiovasc Surg, 2018, 156(4): 1670-1676.
|
18. |
Koezuka S, Mikami T, Tochigi N, et al. Toward improving prognosis prediction in patients undergoing small lung adenocarcinoma resection: Radiological and pathological assessment of diversity and intratumor heterogeneity. Lung Cancer, 2019, 135: 40-46.
|
19. |
Kim SK, Kim TJ, Chung MJ, et al. Lung adenocarcinoma: CT features associated with spread through air spaces. Radiology, 2018, 289(3): 831-840.
|