1. |
黄从新, 张澍, 黄德嘉, 等. 心房颤动: 目前的认识和治疗建议 (2018). 中华心律失常学杂志, 2018, 32(4): 279-346.
|
2. |
Cai WJ, Chen YD, Guo J, et al. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Comput Biol Med, 2020, 116: 103378.
|
3. |
孟小峰, 慈祥. 大数据管理: 概念, 技术与挑战. 计算机研究与发展, 2013, 50(1): 146-169.
|
4. |
Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol, 2018, 71(23): 2668-2679.
|
5. |
Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest, 2010, 137(2): 263-272.
|
6. |
Deo RC. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
|
7. |
尹宝才, 王文通, 王立春. 深度学习研究综述. 北京工业大学学报, 2015, 41(1): 48-59.
|
8. |
郭丽丽, 丁世飞. 深度学习研究进展. 计算机科学, 2015, 42(5): 28-33.
|
9. |
Abiodun OI, Jantan A, Omolara AE, et al. State-of-the-art in artificial neural network applications: A survey. Heliyon, 2018, 4(11): e00938.
|
10. |
Dorado-Díaz PI, Sampedro-Gómez J, Vicente-Palacios V, et al. Applications of artificial intelligence in cardiology. The future is already here. Rev Esp Cardiol (Engl Ed), 2019, 72(12): 1065-1075.
|
11. |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(6): 1229-1251.
|
12. |
Rizwan IRI, Neubert J. Deep learning approaches to biomedical image segmentation. Inform Med Unloc, 2020. [Epub ahead of print].
|
13. |
刘建伟, 刘媛, 罗雄麟. 深度学习研究进展. 计算机应用研究, 2014, 31(7): 1921-1930.
|
14. |
沈荣, 张保文. 机器学习学习方式及其算法探讨. 电脑知识与技术, 2017, 13(23): 159-160.
|
15. |
殷瑞刚, 魏帅, 李晗, 等. 深度学习中的无监督学习方法综述. 计算机系统应用, 2016, 25(8): 1-7.
|
16. |
Kottkamp H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur Heart J, 2013, 34(35): 2731-2738.
|
17. |
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, 2019, 394(10201): 861-867.
|
18. |
Bellotti P, Spirito P, Lupi G, et al. Left atrial appendage function assessed by transesophageal echocardiography before and on the day after elective cardioversion for nonvalvular atrial fibrillation. Am J Cardiol, 1998, 81(10): 1199-1202.
|
19. |
Warraich HJ, Gandhavadi M, Manning WJ. Mechanical discordance of the left atrium and appendage: a novel mechanism of stroke in paroxysmal atrial fibrillation. Stroke, 2014, 45(5): 1481-1484.
|
20. |
Dai HH, Yin LY, Li Y. QRS residual removal in atrial activity signals extracted from single lead: a new perspective based on signal extrapolation. IET Sig Proc, 2016, 10(9): 1169-1175.
|
21. |
Khamis H, Chen J, Stephen Redmond J, et al. Detection of atrial fibrillation from RR intervals and PQRST morphology using a neural network ensemble. Conf Proc IEEE Eng Med Biol Soc, 2018, 2018: 5998-6001.
|
22. |
Chesnokov YV. Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artif Intell Med, 2008, 43(2): 151-165.
|
23. |
Christov I, Krasteva V, Simova I, et al. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG. Physio Meas, 2018, 39(9): 094005.
|
24. |
Henzel N, Wrobel J, Horoba K. Atrial fibrillation episodes detection based on classification of heart rate derived features. Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems. Poland, 2017.
|
25. |
Boon KH, Khalil-Hani M, Malarvili MB. Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm Ⅲ. Comput Methods Programs Biomed, 2018, 153: 171-184.
|
26. |
Fan X, Yao Q, Cai Y, et al. Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J Biomed Health Inform, 2018, 22(6): 1744-1753.
|
27. |
Yao QH, Wang RX, Fan XM, et al. Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network. Information Fusion, 2020, 53: 174-182.
|
28. |
Chen TM, Huang CH, Shih ESC, et al. Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model. iScience, 2020, 23(3): 100886.
|
29. |
Pimor A, Galli E, Vitel E, et al. Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 177-184.
|
30. |
Budzianowski J, Hiczkiewicz J, Burchardt P, et al. Predictors of atrial fibrillation early recurrence following cryoballoon ablation of pulmonary veins using statistical assessment and machine learning algorithms. Heart Vessels, 2019, 34(2): 352-359.
|
31. |
Isakadze N, Martin SS. How useful is the smartwatch ECG? Trends Cardiovasc Med, 2020, 30(7): 442-448.
|
32. |
Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med, 2019, 381(20): 1909-1917.
|
33. |
Wasserlauf J, You C, Patel R, et al. Smartwatch performance for the detection and quantification of atrial fibrillation. Circ Arrhythm Electrophysiol, 2019, 12(6): e006834.
|
34. |
Yan BP, Lai WHS, Chan CKY, et al. High-throughput, contact-free detection of atrial fibrillation from video with deep learning. JAMA Cardiol, 2020, 5(1): 105-107.
|