1. |
Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J, 2014, 35(41): 2873-2926.
|
2. |
Chiu P, Miller DC. Evolution of surgical therapy for Stanford acute type A aortic dissection. Ann Cardiothorac Surg, 2016, 5(4): 275-295.
|
3. |
Ramanath VS, Oh JK, SUndt TM, 3rd, et al. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin Proc, 2009, 84(5): 465-481.
|
4. |
Khayat M, Cooper KJ, Khaja MS, et al. Endovascular management of acute aortic dissection. Cardiovasc Diagn Ther, 2018, 8(Suppl1): S97-S107.
|
5. |
李杨. 主动脉夹层危险因素的研究新进展. 中国循证心血管医学杂志, 2013, 5(3): 318-320.
|
6. |
侯杨峰, 杨文玲, 范文静, 等. 主动脉夹层发病机制研究的新进展. 心血管病学进展, 2018, 39(5): 847-851.
|
7. |
Pape LA, Awais M, Woznicki EM, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J Am Coll Cardiol, 2015, 66(4): 350-358.
|
8. |
Jóźwiak P, Szmagaj A. Health behaviours among men age >50 years with reference to risk factors cardiovascular diseases. Przegl Lek, 2012, 69(10): 934-939.
|
9. |
Santini F, Montalbano G, Casali G, et al. Clinical presentation is the main predictor of in-hospital death for patients with acute type A aortic dissection admitted for surgical treatment: A 25 years experience. Int J Cardiol, 2007, 115(3): 305-311.
|
10. |
叶仕高, 刘永春. 主动脉夹层的治疗研究进展. 中国医学创新, 2019, 16(12): 169-172.
|
11. |
Wang W, Duan W, Xue Y, et al. Clinical features of acute aortic dissection from the Registry of Aortic Dissection in China. J Thorac Cardiovasc Surg, 2014, 148(6): 2995-3000.
|
12. |
赵应录, 王玮璠, 王炜, 等. 两种术式治疗Stanford A型主动脉夹层的病例对照研究. 中国胸心血管外科临床杂志, 2019, 26(7): 664-669.
|
13. |
Fan X, Huang B, Lu H, et al. Impact of admission white blood cell count on short- and long-term mortality in patients with type A acute aortic dissection: An observational study. Medicine (Baltimore), 2015, 94(42): e1761.
|
14. |
Ma M, Shi J, Feng X, et al. The elevated admission white blood cell count relates to adverse surgical outcome of acute Stanford type A aortic dissection. J Cardiothorac Surg, 2020, 15(1): 48.
|
15. |
Kalkan ME, Kalkan AK, Gündeş A, et al. Neutrophil to lymphocyte ratio: A novel marker for predicting hospital mortality of patients with acute type A aortic dissection. Perfusion, 2017, 32(4): 321-327.
|
16. |
Oz K, Iyigun T, Karaman Z, et al. Prognostic value of neutrophil to lymphocyte ratio and risk factors for mortality in patients with Stanford type A aortic dissection. Heart Surg Forum, 2017, 20(3): E119-E123.
|
17. |
Bai Z, Gu J, Shi Y, et al. Effect of inflammation on the biomechanical strength of involved aorta in type A aortic dissection and ascending thoracic aortic aneurysm: An initial research. Anatol J Cardiol, 2018, 20(2): 85-92.
|
18. |
Zeng T, Shi L, Ji Q, et al. Cytokines in aortic dissection. Clin Chim Acta, 2018, 486: 177-182.
|
19. |
Anzai A, Shimoda M, Endo J, et al. Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture. Circ Res, 2015, 116(4): 612-623.
|
20. |
Tieu BC, Lee C, Sun H, et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest, 2009, 119(12): 3637-3651.
|
21. |
Andrews KL, Sampson AK, Irvine JC, et al. Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization. Clin Sci (Lond), 2016, 130(18): 1629-1640.
|
22. |
Gaggar A, Jackson PL, Noerager BD, et al. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol, 2008, 180(8): 5662-5669.
|
23. |
龙芳敏, 吕梁, 宋巍, 等. 基于标记物与方程评估肾小球滤过率的策略进展. 重庆医科大学学报, 2020: 网络优先发表.
|
24. |
Qiu X, Liu C, Ye Y, et al. The diagnostic value of serum creatinine and cystatin c in evaluating glomerular filtration rate in patients with chronic kidney disease: A systematic literature review and meta-analysis. Oncotarget, 2017, 8(42): 2985-72999.
|
25. |
Panteghini M. Enzymatic assays for creatinine: Time for action. Scand J Clin Lab Invest Suppl, 2008, 241: 84-88.
|
26. |
Eghbalzadeh K, Sabashnikov A, Weber C, et al. Impact of preoperative elevated serum creatinine on long-term outcome of patients undergoing aortic repair with Stanford A dissection: A retrospective matched pair analysis. Ther Adv Cardiovasc Dis, 2018, 12(11): 289-298.
|
27. |
Wu ZN, Guan XL, Xu SJ, et al. Does preoperative serum creatinine affect the early surgical outcomes of acute Stanford type A aortic dissection? J Chin Med Assoc, 2020, 83(3): 266-271.
|
28. |
Huber M, Ozrazgat-Baslanti T, Thottakkara P, et al. Mortality and cost of acute and chronic kidney disease after vascular surgery. Ann Vasc Surg, 2016, 30: 72-81.
|
29. |
Thiele RH, Isbell JM, Rosner MH. AKI associated with cardiac surgery. Clin J Am Soc Nephrol, 2015, 10(3): 500-514.
|
30. |
Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: A prospective cohort study. J Am Soc Nephrol, 2004, 15(6): 1597-1605.
|
31. |
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest, 2011, 121(11): 4210-4221.
|
32. |
Marconi VC, Duncan MS, So-Armah K, et al. Bilirubin is inversely associated with cardiovascular disease among HIV-positive and HIV-negative individuals in VACS (Veterans Aging Cohort Study). J Am Heart Assoc, 2018, 7(10): e007792.
|
33. |
Mayer M. Association of serum bilirubin concentration with risk of coronary artery disease. Clin Chem, 2000, 46(11): 1723-1727.
|
34. |
Ayer A, Zarjou A, Agarwal A, et al. Heme oxygenases in cardiovascular health and disease. Physiol Rev, 2016, 96(4): 1449-1508.
|
35. |
Vogel ME, Idelman G, Konaniah ES, et al. Bilirubin prevents atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice by inhibiting endothelial VCAM-1 and ICAM-1 signaling. J Am Heart Assoc, 2017, 6(4): e004820.
|
36. |
Tsai MT, Tarng DC. Beyond a measure of liver function-bilirubin acts as a potential cardiovascular protector in chronic kidney disease patients. Int J Mol Sci, 2018, 20(1): 117.
|
37. |
Zhang L, Zhou J, Jing Z, et al. Glucocorticoids regulate the vascular remodeling of aortic dissection via the p38 MAPK-HSP27 pathway mediated by soluble TNF-RⅡ. EBioMedicine, 2018, 27: 247-257.
|
38. |
曾冰, 白松杰, 刘冬连, 等. 术后早期全身炎症反应综合征对急性 Stanford A 型主动脉夹层患者短期预后的影响. 中国胸心血管外科临床杂志, 2021, 28(7): 796-800.
|
39. |
Liu H, Chang Q, Zhang H, et al. Predictors of adverse outcome and transient neurological dysfunction following aortic arch replacement in 626 consecutive patients in China. Heart Lung Circ, 2017, 26(2): 172-178.
|
40. |
Axtell AL, Fiedler AG, Melnitchouk S, et al. Correlation of cardiopulmonary bypass duration with acute renal failure after cardiac surgery. J Thorac Cardiovasc Surg, 2019, S0022-5223(19): 30286-30287.
|
41. |
Salsano A, Giacobbe DR, Sportelli E, et al. Aortic cross-clamp time and cardiopulmonary bypass time: Prognostic implications in patients operated on for infective endocarditis. Interact Cardiovasc Thorac Surg, 2018, 27(3): 328-335.
|
42. |
Zheng J, Xu SD, Zhang YC, et al. Association between cardiopulmonary bypass time and 90-day post-operative mortality in patients undergoing arch replacement with the frozen elephant trunk: A retrospective cohort study. Chin Med J (Engl), 2019, 132(19): 2325-2332.
|
43. |
Evora PR, Bottura C, Arcêncio L, et al. Key points for curbing cardiopulmonary bypass inflammation. Acta Cir Bras, 2016, 31Suppl1: 45-52.
|
44. |
Fujii Y. Evaluation of inflammation caused by cardiopulmonary bypass in a small animal model. Biology (Basel), 2020, 9(4): 81.
|
45. |
Baehner T, Boehm O, Probst C, et al. Kardiopulmonaler bypass in der herzchirurgie [Cardiopulmonary bypass in cardiac surgery]. Anaesthesist, 2012, 61(10): 846-856.
|
46. |
Dekker NAM, Veerhoek D, Koning NJ, et al. Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass. Anaesthesia, 2019, 74(5): 609-618.
|
47. |
Salem M, Friedrich C, Thiem A, et al. Risk factors for mortality in acute aortic dissection type A: A centre experience over 15 years. Thorac Cardiovasc Surg, 2021, 69(4): 322-328.
|
48. |
Liu X, Wang G, Zhang T. The analysis of the levels of plasma inflammation-related cytokines and endotoxins in patients with acute aortic dissection. Clin Hemorheol Microcirc, 2020, 76(1): 1-7.
|
49. |
Gong M, Wu Z, Xu S, et al. Protocol for creation of a risk scoring system for acute type A aortic dissection surgery. Int J Surg Protoc, 2019, 14: 19-23.
|