1. |
Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J, 2016, 37(38): 2893-2962.
|
2. |
Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ Res, 2017, 120(9): 1501-1517.
|
3. |
Robertson JO, Saint LL, Leidenfrost JE, et al. Illustrated techniques for performing the Cox-Maze Ⅳ procedure through a right mini-thoracotomy. Ann Cardiothorac Surg, 2014, 3(1): 105-116.
|
4. |
Wolf RK, Burgess S. Minimally invasive surgery for atrial fibrillation-wolf mini maze procedure. Ann Cardiothorac Surg, 2014, 3(1): 122-123.
|
5. |
Ismail I, Fleissner F, Cebotari S, et al. Left-sided mini-maze procedure via the left atrial appendage. Interact Cardiovasc Thorac Surg, 2014, 18(6): 847-849.
|
6. |
Cox JL, Churyla A, Malaisrie SC, et al. When is a maze procedure a maze procedure? Can J Cardiol, 2018, 34(11): 1482-1491.
|
7. |
Hayashi K, Tada H, Yamagishi M. The genetics of atrial fibrillation. Curr Opin Cardiol, 2017, 32(1): 10-16.
|
8. |
Campbell HM, Wehrens XHT. Genetics of atrial fibrillation: an update. Curr Opin Cardiol, 2018, 33(3): 304-310.
|
9. |
Roselli C, Chaffin MD, Weng LC, et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet, 2018, 50(9): 1225-1233.
|
10. |
Rani U, Praveen Kumar KS, Munisamaiah M, et al. Atrial fibrillation associated genetic variation near PITX2 gene increases the risk of preeclampsia. Pregnancy Hypertens, 2018, 13: 214-217.
|
11. |
Gutierrez A, Chung MK. Genomics of atrial fibrillation. Curr Cardiol Rep, 2016, 18(6): 55.
|
12. |
Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 2003, 299(5604): 251-254.
|
13. |
Ma KJ, Li N, Teng SY, et al. Modulation of KCNQ1 current by atrial fibrillation-associated KCNE4 (145E/D) gene polymorphism. Chin Med J (Engl), 2007, 120(2): 150-154.
|
14. |
Li N, Dobrev D, Wehrens XH. PITX2: a master regulator of cardiac channelopathy in atrial fibrillation? Cardiovasc Res, 2016, 109(3): 345-347.
|
15. |
Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart, 2019, 105(24): 1860-1867.
|
16. |
Peng G, Barro-Soria R, Sampson KJ, et al. Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations. Sci Rep, 2017, 7: 45911.
|
17. |
Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet, 2018, 50(9): 1234-1239.
|
18. |
Campbell CM, Campbell JD, Thompson CH, et al. Selective targeting of gain-of-function KCNQ1 mutations predisposing to atrial fibrillation. Circ Arrhythm Electrophysiol, 2013, 6(5): 960-966.
|
19. |
Lee HC, Chiu CC, Chen CC, et al. Modulation of potassium channel KCNQ1 transcript in right atrial appendage of patients with postoperative atrial fibrillation. Int J Cardiol, 2016, 222: 696-698.
|
20. |
Syeda F, Kirchhof P, Fabritz L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol, 2017, 595(12): 4019-4026.
|
21. |
Nadadur RD, Broman MT, Boukens B, et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci Transl Med, 2016, 8(354): 354ra115.
|