1. |
Ozaki Y, Garcia-Garcia HM, Shlofmitz E, et al. Second-generation drug-eluting resorbable magnesium scaffold: Review of the clinical evidence. Cardiovasc Revasc Med, 2020, 21(1): 127-136.
|
2. |
Kufner S, Sorges J, Mehilli J, et al. Randomized trial of polymer-free sirolimus- and probucol-eluting stents versus durable polymer zotarolimus-eluting stents: 5-year results of the isar-test-5 trial. JACC Cardiovasc Interv, 2016, 9(8): 784-792.
|
3. |
Pendyala LK, Matsumoto D, Shinke T, et al. Nobori stent shows less vascular inflammation and early recovery of endothelial function compared with Cypher stent. JACC Cardiovasc Interv, 2012, 5(4): 436-444.
|
4. |
Yang Y, Gao P, Wang J, et al. Endothelium-mimicking multifunctional coating modified cardiovascular stents via a stepwise metal-catechol-(amine) surface engineering strategy. Research (Wash DC), 2020, 2020: 9203906.
|
5. |
Costopoulos C, Latib A, Naganuma T, et al. Newly available and recent advances in drug-eluting stents. Expert Rev Cardiovasc Ther, 2013, 11(5): 555-566.
|
6. |
Gupta ML, Bode CJ, Georg GI, et al. Understanding tubulin-Taxol interactions: Mutations that impart Taxol binding to yeast tubulin. Proc Natl Acad Sci U S A, 2003, 100(11): 6394-6397.
|
7. |
Murase S, Suzuki Y, Yamaguchi T, et al. The relationship between re-endothelialization and endothelial function after DES implantation: Comparison between paclitaxcel eluting stent and zotarolims eluting stent. Catheter Cardiovasc Interv, 2014, 83(3): 412-417.
|
8. |
Aoki J, Serruys PW, van Beusekom H, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: The HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol, 2005, 45(10): 1574-1579.
|
9. |
Park KS, Kang SN, Kim DH, et al. Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomater, 2020, 111: 91-101.
|
10. |
Hertault A, Chai F, Maton M, et al. In vivo evaluation of a pro-healing polydopamine coated stent through an in-stent restenosis rat model. Biomater Sci, 2021, 9(1): 212-220.
|
11. |
Li C, Li Q, Mei Q, et al. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci, 2015, 126: 57-68.
|
12. |
Yang J, Wei K, Wang Y, et al. Construction of a small-caliber tissue-engineered blood vessel using icariin-loaded β-cyclodextrin sulfate for in situ anticoagulation and endothelialization. Sci China Life Sci, 2018, 61(10): 1178-1188.
|
13. |
Su LC, Chen YH, Chen MC. Dual drug-eluting stents coated with multilayers of hydrophobic heparin and sirolimus. ACS Appl Mater Interfaces, 2013, 5(24): 12944-12953.
|
14. |
Gambini J, Inglés M, Olaso G, et al. Properties of Resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev, 2015, 2015: 837042.
|
15. |
Mnjoyan ZH, Fujise K. Profound negative regulatory effects by resveratrol on vascular smooth muscle cells: A role of p53-p21(WAF1/CIP1) pathway. Biochem Biophys Res Commun, 2003, 311(2): 546-552.
|
16. |
Asadpour S, Yeganeh H, Khademi F, et al. Resveratrol-loaded polyurethane nanofibrous scaffold: Viability of endothelial and smooth muscle cells. Biomed Mater, 2019, 15(1): 015001.
|
17. |
Zhang J, Liu Y, Luo R, et al. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings. Applied Surface Science, 2015, 328: 154-162.
|
18. |
Qiu H, Qi P, Liu J, et al. Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials, 2019, 207: 10-22.
|
19. |
Jean-Baptiste E, Blanchemain N, Neut C, et al. Evaluation of the anti-infectious properties of polyester vascular prostheses functionalised with cyclodextrin. J Infect, 2014, 68(2): 116-124.
|
20. |
Rizas KD, Mehilli J. Stent polymers: Do they make a difference? Circ Cardiovasc Interv, 2016, 9(6): e002943.
|
21. |
Forrest JK, Lansky AJ, Meller SM, et al. Evaluation of XIENCE V everolimus-eluting and Taxus Express2 paclitaxel-eluting coronary stents in patients with jailed side branches from the SPIRIT Ⅳ trial at 2 years. Am J Cardiol, 2013, 111(11): 1580-1586.
|
22. |
Sharma A, Sharma SK, Vallakati A, et al. Duration of dual antiplatelet therapy after various drug-eluting stent implantation. Int J Cardiol, 2016, 215: 157-166.
|
23. |
Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis. Lancet, 2007, 370(9591): 937-948.
|
24. |
von Birgelen C, Kok MM, van der Heijden LC, et al. Very thin strut biodegradable polymer everolimus-eluting and sirolimus-eluting stents versus durable polymer zotarolimus-eluting stents in allcomers with coronary artery disease (BIO-RESORT): A three-arm, randomised, non-inferiority trial. Lancet, 2016, 388(10060): 2607-2617.
|
25. |
Pauck RG, Reddy BD. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med Eng Phys, 2015, 37(1): 7-12.
|
26. |
Mehilli J. Degradable polymer drug-eluting stents: A durable benefit? Lancet, 2013, 381(9867): 607-609.
|
27. |
Fu Y, Tan L, Meng L, et al. Therapeutic effects of paclitaxel loaded polyethylene glycol-polylactic acid-glycolic acid copolymer nanoparticles on pancreatic cancer in rats. J Nanosci Nanotechnol, 2020, 20(12): 7271-7275.
|
28. |
Gutiérrez-Chico JL, van Geuns RJ, Regar E, et al. Tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent vs. a fluoropolymer-coated everolimus-eluting stent at 13-month follow-up: An optical coherence tomography substudy from the RESOLUTE All Comers trial. Eur Heart J, 2011, 32(19): 2454-2463.
|
29. |
Hasebe T, Yohena S, Kamijo A, et al. Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation. J Biomed Mater Res A, 2007, 83(4): 1192-1199.
|
30. |
Stefanini GG, Byrne RA, Serruys PW, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: A pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur Heart J, 2012, 33(10): 1214-1222.
|
31. |
Faxon DP, Eikelboom JW, Berger PB, et al. Consensus document: Antithrombotic therapy in patients with atrial fibrillation undergoing coronary stenting. A North-American perspective. Thromb Haemost, 2011, 106(4): 572-584.
|
32. |
Généreux P, Kumsars I, Schneider JE, et al. Dedicated bifurcation stent for the treatment of bifurcation lesions involving large side branches: Outcomes from the tryton confirmatory study. JACC Cardiovasc Interv, 2016, 9(13): 1338-1346.
|
33. |
Hausleiter J, Kastrati A, Wessely R, et al. Prevention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymer-free, on-site stent coating. Eur Heart J, 2005, 26(15): 1475-1481.
|
34. |
Worthley SG, Abizaid A, Kirtane AJ, et al. First-in-human evaluation of a novel polymer-free drug-filled stent: Angiographic, IVUS, OCT, and clinical outcomes from the revelution study. JACC Cardiovasc Interv, 2017, 10(2): 147-156.
|
35. |
Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB Ⅱ): A 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet, 2016, 388(10059): 2479-2491.
|
36. |
Hart DR, Fabi SG, White WM, et al. Current concepts in the use of PLLA: Clinical synergy noted with combined use of microfocused ultrasound and poly-l-lactic acid on the face, neck, and décolletage. Plast Reconstr Surg, 2015, 136(5 Suppl): 180S-187S.
|
37. |
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3): 1377-1397.
|
38. |
Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): A prospective open-label trial. Lancet, 2008, 371(9616): 899-907.
|
39. |
Tenekecioglu E, Farooq V, Bourantas CV, et al. Bioresorbable scaffolds: A new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord, 2016, 16: 38.
|
40. |
Hytönen JP, Taavitsainen J, Tarvainen S, et al. Biodegradable coronary scaffolds: Their future and clinical and technological challenges. Cardiovasc Res, 2018, 114(8): 1063-1072.
|
41. |
Yang J, Cui F, Lee IS. Surface modifications of magnesium alloys for biomedical applications. Ann Biomed Eng, 2011, 39(7): 1857-1871.
|
42. |
Díaz JF, Camacho S. Magmaris resorbable magnesium scaffolds: Are they here to stay? Rev Port Cardiol, 2020, 39(8): 427-429.
|
43. |
Haude M, Ince H, Kische S, et al. Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: Pooled 12-month outcomes of BIOSOLVE-Ⅱ and BIOSOLVE-Ⅲ. Catheter Cardiovasc Interv, 2018, 92(7): E502-E511.
|
44. |
Purushottam B, Tuma JL, Krishnan P. Commentary: Leave nothing behind: No stent, no restenosis, no mortality. J Endovasc Ther, 2020, 27(5): 706-713.
|