1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Lin HT, Liu FC, Wu CY, et al. Epidemiology and survival outcomes of lung cancer: A population-based study. Biomed Res Int, 2019, 2019: 8148156.
|
3. |
Holmes JH, Sacchi L, Bellazzi R, et al. Artificial intelligence in medicine AIME 2015. Artif Intell Med, 2017, 81: 1-2.
|
4. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
|
5. |
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: General overview. Korean J Radiol, 2017, 18(4): 570-584.
|
6. |
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 2018, 172(5): 1122-1131.
|
7. |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
|
8. |
Danaee P, Ghaeini R, Hendrix DA. A deep learning approach for cancer detection and relevant gene identification. Pac Symp Biocomput, 2017, 22: 219-229.
|
9. |
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep, 2016, 6: 26286.
|
10. |
Ertosun MG, Rubin DL. Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks. AMIA Annu Symp Proc, 2015, 2015: 1899-1908.
|
11. |
Hanna N, Johnson D, Temin S, et al. Systemic therapy for stage Ⅳ non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol, 2017, 35(30): 3484-3515.
|
12. |
Teramoto A, Tsukamoto T, Kiriyama Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. Biomed Res Int, 2017, 2017: 4067832.
|
13. |
Khosravi P, Kazemi E, Imielinski M, et al. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine, 2018, 27: 317-328.
|
14. |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559-1567.
|
15. |
Wang X, Chen H, Gan C, et al. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans Cybern, 2020, 50(9): 3950-3962.
|
16. |
Song SH, Park H, Lee G, et al. Imaging phenotyping using radiomics to predict micropapillary pattern within lung adenocarcinoma. J Thorac Oncol, 2017, 12(4): 624-632.
|
17. |
Marx A, Chan JK, Coindre JM, et al. The 2015 World Health Organization classification of tumors of the thymus: Continuity and changes. J Thorac Oncol, 2015, 10(10): 1383-1395.
|
18. |
Hung JJ, Yeh YC, Jeng WJ, et al. Predictive value of the International Association for the Sudy of Lung Cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. J Clin Oncol, 2014, 32(22): 2357-2364.
|
19. |
Tsao MS, Marguet S, Le Teuff G, et al. Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. J Clin Oncol, 2015, 33(30): 3439-3446.
|
20. |
Wei JW, Tafe LJ, Linnik YA, et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep, 2019, 9(1): 3358.
|
21. |
Larsen JE, Cascone T, Gerber DE, et al. Targeted therapies for lung cancer: Clinical experience and novel agents. Cancer J, 2011, 17(6): 512-527.
|
22. |
Li Q, Wang X, Liang F, et al. A Bayesian hidden potts mixture model for analyzing lung cancer pathology images. Biostatistics, 2019, 20(4): 565-581.
|
23. |
Choi H, Na KJ. A risk stratification model for lung cancer based on gene coexpression network and deep learning. Biomed Res Int, 2018, 2018: 2914280.
|
24. |
Mezheyeuski A, Bergsland CH, Backman M, et al. Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients. J Pathol, 2018, 244(4): 421-431.
|
25. |
Trivella M, Pezzella F, Pastorino U, et al. Microvessel density as a prognostic factor in non-small-cell lung carcinoma: A meta-analysis of individual patient data. Lancet Oncol, 2007, 8(6): 488-499.
|
26. |
Yi F, Yang L, Wang S, et al. Microvessel prediction in H& E stained pathology images using fully convolutional neural networks. BMC Bioinformatics, 2018, 19(1): 64.
|
27. |
Wang S, Wang T, Yang L, et al. ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network. EBioMedicine, 2019, 50: 103-110.
|
28. |
Wang S, Rong R, Yang DM, et al. Computational staining of pathology images to study the tumor microenvironment in lung cancer. Cancer Res, 2020, 80(10): 2056-2066.
|
29. |
Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun, 2016, 7: 12474.
|