1. |
钱桂生. 肺癌不同病理类型发病率的变化情况及其原因. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-6.
|
2. |
萧毅, 刘士远. 肺结节影像人工智能技术现状与思考. 肿瘤影像学, 2018, 27(4): 249-252.
|
3. |
张逊. 人工智能辅助肺癌诊疗一体化解决方案的临床实践与展望. 中国胸心血管外科临床杂志, 2019, 26(12): 1167-1170.
|
4. |
Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep, 2017, 7: 468-479.
|
5. |
李欣菱, 王颖. 人工智能在肺结节检测与诊断中的应用及发展. 新发传染病电子杂志, 2019, 4(3): 185-189.
|
6. |
Mohamed Hoesein FA, de Jong PA, Mets OM. Optimizing lung cancer screening: Nodule size, volume doubling time, morphology and evaluation of other diseases. Ann Transl Med, 2015, 3(2): 19.
|
7. |
Usuda K, Saito Y, Sagawa M, et al. Tumor doubling time and prognostic assessment of patients with primary lung cancer. Cancer, 1994, 74(8): 2239-2244.
|
8. |
宋伟, 金征宇, 严洪珍, 等. 初步评估 16 层螺旋 CT 的 Lung Care 软件在肺结节研究中的辅助价值. 中华放射学杂志, 2005, 39(1): 11-16.
|
9. |
王华斌, 李苏建, 卢光明. 多层螺旋 CT 评估孤立性肺结节的临床研究进展. 放射学实践, 2010, 25(1): 105-108.
|
10. |
Oda S, Awai K, Murao K, et al. Volume-doubling time of pulmonary nodules with ground glass opacity at multidetector CT: Assessment with computer-aided three-dimensional volumetry. Acad Radiol, 2011, 18(1): 63-69.
|
11. |
Walter JE, Heuvelmans MA, Ten Haaf K, et al. Persisting new nodules in incidence rounds of the NELSON CT lung cancer screening study. Thorax, 2019, 74(3): 247-253.
|
12. |
裘杨波, 毛锋, 张辉, 等. 早期肺癌进展趋势的影响因素和 CT 研判. 中国肺癌杂志, 2018, 21(10): 793-799.
|
13. |
Zhang YP, Heuvelmans MA, Zhang H, et al. Changes in quantitative CT image features of ground-glass nodules in differentiating invasive pulmonary adenocarcinoma from benign and in situ lesions: histopathological comparisons. Clin Radiol, 2018, 73(5): 504.
|
14. |
Son JY, Lee HY, Kim JH, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping. Eur Radiol, 2016, 26(1): 43-54.
|