1. |
向润, 李强. 肺癌“一体化诊疗、全程管理”模式的发展现状与思考—基于四川省肿瘤医院肺癌MDT团队经验. 中国肺癌杂志, 2020, 23(4): 211-215.
|
2. |
Zheng S, Cornelissen LJ, Cui X, et al. Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification. Med Phys, 2021, 48(2): 733-744.
|
3. |
Tan JR, Cheong EHT, Chan LP, et al. Implementation of an artificial intelligence-based fouble read system in capturing pulmonary nodule discrepancy in CT studies. Curr Probl Diagn Radiol, 2021, 50(2): 119-122.
|
4. |
Oh JY, Kwon SY, Yoon HI, et al. Clinical significance of a solitary ground-glass opacity (GGO) lesion of the lung detected by chest CT. Lung Cancer, 2007, 55(1): 67-73.
|
5. |
Fan L, Liu SY, Li QC, et al. Multidetector CT features of pulmonary focal ground-glass opacity: Differences between benign and malignant. Br J Radiol, 2012, 85(1015): 897-904.
|
6. |
Blanc D, Racine V, Khalil A, et al. Artificial intelligence solution to classify pulmonary nodules on CT. Diagn Interv Imaging, 2020, 101(12): 803-810.
|
7. |
Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep, 2017, 7: 46479.
|
8. |
Yang W, Xia W, Xie Y, et al. Optimisation analysis of pulmonary nodule diagnostic test based on deep belief nets. IET Image Processing, 2020, 14(7): 1227-1232.
|
9. |
Krarup MMK, Krokos G, Subesinghe M, et al. Artificial intelligence for the characterization of pulmonary nodules, lung tumors and mediastinal nodes on PET/CT. Semin Nucl Med, 2021, 51(2): 143-156.
|
10. |
张逊. 人工智能辅助肺癌诊疗一体化解决方案的临床实践与展望. 中国胸心血管外科临床杂志, 2019, 26(12): 1167-1170.
|
11. |
Heuvelmans MA, van Ooijen PMA, Ather S, et al. Lung cancer prediction by deep learning to identify benign lung nodules. Lung Cancer, 2021, 154: 1-4.
|
12. |
Yang Y, Jin G, Pang Y, et al. The diagnostic accuracy of artificial intelligence in thoracic diseases: A protocol for systematic review and meta-analysis. Medicine (Baltimore), 2020, 99(7): e19114.
|
13. |
Yamashita S, Yoshida Y, Iwasaki A. Robotic surgery for thoracic disease. Ann Thorac Cardiovasc Surg, 2016, 22(1): 1-5.
|
14. |
方燕红, 陈加优, 王枫. CT三维重建在肺小结节行胸腔镜肺段切除术中的应用. 现代医用影像学, 2021, 30(2): 215-218.
|
15. |
Hosoda K, Niihara M, Harada H, et al. Robot-assisted minimally invasive esophagectomy for esophageal cancer: Meticulous surgery minimizing postoperative complications. Ann Gastroenterol Surg, 2020, 4(6): 608-617.
|
16. |
Hu X, Wang M. Efficacy and safety of robot-assisted thoracic surgery (RATS) compare with video-assisted thoracoscopic surgery (VATS) for lung lobectomy in patients with non-small cell lung cancer. Comb Chem High Throughput Screen, 2019, 22(3): 169-178.
|
17. |
Shademan A, Decker RS, Opfermann J, et al. Plenoptic cameras in surgical robotics: Calibration, registration, and evaluation. IEEE Int Conf Robot Autom, 2016, 2016: 708-714.
|
18. |
Chen-Yoshikawa TF, Fukui T, Nakamura S, et al. Current trends in thoracic surgery. Nagoya J Med Sci, 2020, 82(2): 161-174.
|
19. |
Baldwin DR, Gustafson J, Pickup L, et al. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax, 2020, 75(4): 306-312.
|
20. |
Etienne H, Hamdi S, Le Roux M, et al. Artificial intelligence in thoracic surgery: Past, present, perspective and limits. Eur Respir Rev, 2020, 29(157): 200010.
|