1. |
Augoustides JG, Pochettino A, Ochroch EA, et al. Renal dysfunction after thoracic aortic surgery requiring deep hypothermic circulatory arrest: Definition, incidence, and clinical predictors. J Cardiothorac Vasc Anesth, 2006, 20(5): 673-677.
|
2. |
Nakamura T, Mikamo A, Matsuno Y, et al. Impact of acute kidney injury on prognosis of chronic kidney disease after aortic arch surgery. Interact Cardiovasc Thorac Surg, 2020, 30(2): 273-279.
|
3. |
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract, 2012, 120(4): c179-c184.
|
4. |
Hu J, Chen R, Liu S, et al. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: A systematic review and meta-analysis. J Cardiothorac Vasc Anesth, 2016, 30(1): 82-89.
|
5. |
Ghincea CV, Reece TB, Eldeiry M, et al. Predictors of acute kidney injury following aortic arch surgery. J Surg Res, 2019, 242: 40-46.
|
6. |
Mori Y, Sato N, Kobayashi Y, et al. Acute kidney injury during aortic arch surgery under deep hypothermic circulatory arrest. J Anesth, 2011, 25(6): 799-804.
|
7. |
余金甜, 陈俊杉, 张爱琴. 急性 A 型主动脉夹层术后急性肾损伤危险因素的系统评价与 Meta 分析. 中国胸心血管外科临床杂志, 2020, 27(1): 77-84.
|
8. |
Nota H, Asai T, Suzuki T, et al. Risk factors for acute kidney injury in aortic arch surgery with selective cerebral perfusion and mild hypothermic lower body circulatory arrest. Interact Cardiovasc Thorac Surg, 2014, 19(6): 955-961.
|
9. |
Medić B, Rovcanin B, Vujovic KS, et al. Evaluation of novel biomarkers of acute kidney injury: The possibilities and limitations. Curr Med Chem, 2016, 23(19): 1981-1997.
|
10. |
Nejat M, Pickering JW, Walker RJ, et al. Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dial Transplant, 2010, 25(10): 3283-3289.
|
11. |
Jung YJ, Lee HR, Kwon OJ. Comparison of serum cystatin C and creatinine as a marker for early detection of decreasing glomerular filtration rate in renal transplants. J Korean Surg Soc, 2012, 83(2): 69-74.
|
12. |
Levey AS, Inker LA. Assessment of glomerular filtration rate in health and disease: A state of the art review. Clin Pharmacol Ther, 2017, 102(3): 405-419.
|
13. |
Yuan SM. Acute kidney injury after pediatric cardiac surgery. Pediatr Neonatol, 2019, 60(1): 3-11.
|
14. |
Lassus JP, Nieminen MS, Peuhkurinen K, et al. Markers of renal function and acute kidney injury in acute heart failure: Definitions and impact on outcomes of the cardiorenal syndrome. Eur Heart J, 2010, 31(22): 2791-2798.
|
15. |
Yin L, Li G, Liu T, et al. Probucol for the prevention of cystatin C-based contrast-induced acute kidney injury following primary or urgent angioplasty: A randomized, controlled trial. Int J Cardiol, 2013, 167(2): 426-429.
|
16. |
Budano C, Andreis A, De Filippo O, et al. A single cystatin C determination before coronary angiography can predict short and long-term adverse events. Int J Cardiol, 2020, 300: 73-79.
|
17. |
薛寅莹, 章淬, 牛永胜, 等. 尿 NGAL 对急性 Stanford A 型主动脉夹层手术后急性肾损伤的早期诊断价值. 中国胸心血管外科临床杂志, 2019, 26(11): 1103-1106.
|
18. |
Basu RK, Wong HR, Krawczeski CD, et al. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J Am Coll Cardiol, 2014, 64(25): 2753-2762.
|
19. |
池锐彬, 邓宇珺, 袁婕, 等. 尿 NAG 联合血清 CysC 预测重症患者急性肾损伤诊断和预后的临床价值. 中华急诊医学杂志, 2016, 25(2): 194-199.
|
20. |
Wang L, Deng Y, Zhai Y, et al. Impact of blood glucose levels on the accuracy of urinary N-acety-β-D-glucosaminidase for acute kidney injury detection in critically ill adults: A multicenter, prospective, observational study. BMC Nephrol, 2019, 20(1): 186.
|