1. |
Evangelista A, Isselbacher EM, Bossone E, et al. Insights from the international registry of acute aortic dissection: A 20-year experience of collaborative clinical research. Circulation, 2018, 137(17): 1846-1860.
|
2. |
Nienaber CA, Clough RE, Sakalihasan N, et al. Aortic dissection. Nat Rev Dis Primers, 2016, 2: 16071.
|
3. |
朱泓樵, 李逸明, 周建, 等. 炎症反应参与主动脉夹层临床转归的研究进展. 中国普通外科杂志, 2020, 29(12): 1509-1514.
|
4. |
Li X, Liu D, Zhao L, et al. Targeted depletion of monocyte/macrophage suppresses aortic dissection with the spatial regulation of MMP-9 in the aorta. Life Sci, 2020, 254: 116927.
|
5. |
Peterson KR, Cottam MA, Kennedy AJ, et al. Macrophage-targeted therapeutics for metabolic disease. Trends Pharmacol Sci, 2018, 39(6): 536-546.
|
6. |
Gordon S. Phagocytosis: An immunobiologic process. Immunity, 2016, 44(3): 463-475.
|
7. |
Wang Y, Gao R, Li J, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization. Int J Nanomedicine, 2021, 16: 2803-2818.
|
8. |
Sica A, Mantovani A. Macrophage plasticity and polarization: In vivo veritas. J Clin Invest, 2012, 122(3): 787-795.
|
9. |
Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol, 2020, 40(1): 20-33.
|
10. |
Xiao T, Zhang L, Huang Y, et al. Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensinⅡ-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci, 2019, 218: 132-138.
|
11. |
Rahman K, Fisher EA. Insights from pre-clinical and clinical studies on the role of innate inflammation in atherosclerosis regression. Front Cardiovasc Med, 2018, 5: 32.
|
12. |
Wang X, Zhang H, Cao L, et al. The role of macrophages in aortic dissection. Front Physiol, 2020, 11: 54.
|
13. |
李莉, 卓瑾, 郑玲, 等. 不同诱导极化方式对大鼠骨髓来源巨噬细胞增殖、凋亡及吞噬能力的影响. 中国组织工程研究, 2021, 25(25): 4032-4037.
|
14. |
Gou W, Wang J, Song L, et al. Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation. Am J Transplant, 2021, 21(5): 1713-1724.
|
15. |
He Y, Pei JH, Li XQ, et al. IL-35 promotes EMT through STAT3 activation and induces MET by promoting M2 macrophage polarization in HCC. Biochem Biophys Res Commun, 2021, 559: 35-41.
|
16. |
胡旺, 张占红, 冯浩杰, 等. 多房棘球蚴影响PPARβ、γ表达并调控巨噬细胞极化. 中国高原医学与生物学杂志, 2021, 42(1): 1-12.
|
17. |
Kapoor N, Niu J, Saad Y, et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol, 2015, 194(12): 6011-6023.
|
18. |
Wang X, Li H, Chen S, et al. P300/CBP-associated factor (PCAF) attenuated M1 macrophage inflammatory responses possibly through KLF2 and KLF4. Immunol Cell Biol, 2021, 99(7): 724-736.
|
19. |
Katsuki S, Koga JI, Matoba T, et al. Nanoparticle-mediated delivery of pitavastatin to monocytes/macrophages inhibits angiotensin Ⅱ-induced abdominal aortic aneurysm formation in apoe -/- mice. J Atheroscler Thromb, 2022, 29(1): 111-125.
|
20. |
Hu G, Guo M, Xu J, et al. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front Immunol, 2019, 10: 1998.
|
21. |
Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol, 2019, 106(2): 345-358.
|
22. |
Gong M, Zhuo X, Ma A. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med Sci Monit Basic Res, 2017, 23: 240-249.
|
23. |
Adam M, Kooreman NG, Jagger A, et al. Systemic upregulation of IL-10 (interleukin-10) using a nonimmunogenic vector reduces growth and rate of dissecting abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1796-1805.
|
24. |
Scola L, Di Maggio FM, Vaccarino L, et al. Role of TGF-β pathway polymorphisms in sporadic thoracic aortic aneurysm: Rs900 TGF-β2 is a marker of differential gender susceptibility. Mediators Inflamm, 2014, 2014: 165758.
|
25. |
Bi C, Fu Y, Li B. Brain-derived neurotrophic factor alleviates diabetes mellitus-accelerated atherosclerosis by promoting M2 polarization of macrophages through repressing the STAT3 pathway. Cell Signal, 2020, 70: 109569.
|
26. |
Li J, Xia N, Wen S, et al. IL (interleukin)-33 suppresses abdominal aortic aneurysm by enhancing regulatory T-cell expansion and activity. Arterioscler Thromb Vasc Biol, 2019, 39(3): 446-458.
|
27. |
Gharib SA, McMahan RS, Eddy WE, et al. Transcriptional and functional diversity of human macrophage repolarization. J Allergy Clin Immunol, 2019, 143(4): 1536-1548.
|
28. |
Svendsen P, Graversen JH, Etzerodt A, et al. Antibody-directed glucocorticoid targeting to CD163 in M2-type macrophages attenuates fructose-induced liver inflammatory changes. Mol Ther Methods Clin Dev, 2016, 4: 50-61.
|
29. |
Razavi MK, Donohoe D, D'Agostino RB, et al. Adventitial drug delivery of dexamethasone to improve primary patency in the treatment of superficial femoral and popliteal artery disease: 12-month results from the DANCE clinical trial. JACC Cardiovasc Interv, 2018, 11(10): 921-931.
|
30. |
Zhang L, Zhou J, Jing Z, et al. Glucocorticoids regulate the vascular remodeling of aortic dissection via the p38 MAPK-HSP27 pathway mediated by soluble TNF-RⅡ. EBioMedicine, 2018, 27: 247-257.
|
31. |
Jackson DE. The unfolding tale of PECAM-1. FEBS Lett, 2003, 540(1-3): 7-14.
|
32. |
Zhang G, Xue H, Sun D, et al. Soft apoptotic-cell-inspired nanoparticles persistently bind to macrophage membranes and promote anti-inflammatory and pro-healing effects. Acta Biomater, 2021, 131: 452-463.
|
33. |
Andreata F, Syvannarath V, Clement M, et al. Macrophage CD31 signaling in dissecting aortic aneurysm. J Am Coll Cardiol, 2018, 72(1): 45-57.
|
34. |
Wang Z, Brandt S, Medeiros A, et al. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS One, 2015, 10(2): e0115855.
|
35. |
Yu Q, Li Q, Yang X, et al. Dexmedetomidine suppresses the development of abdominal aortic aneurysm by downregulating the mircoRNA-21/PDCD 4 axis. Int J Mol Med, 2021, 47(5): 90.
|
36. |
Xue YL, Zhang SX, Zheng CF, et al. Long non-coding RNA MEG3 inhibits M2 macrophage polarization by activating TRAF6 via microRNA-223 down-regulation in viral myocarditis. J Cell Mol Med, 2020, 24(21): 12341-12354.
|
37. |
Martinez B, Peplow PV. Immunomodulators and microRNAs as neurorestorative therapy for ischemic stroke. Neural Regen Res, 2017, 12(6): 865-874.
|
38. |
Kumar S, Boon RA, Maegdefessel L, et al. Role of noncoding RNAs in the pathogenesis of abdominal aortic aneurysm. Circ Res, 2019, 124(4): 619-630.
|
39. |
Di Gregoli K, Mohamad Anuar NN, Bianco R, et al. MicroRNA-181b controls atherosclerosis and aneurysms through regulation of TIMP-3 and elastin. Circ Res, 2017, 120(1): 49-65.
|
40. |
Essandoh K, Li Y, Huo J, et al. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock, 2016, 46(2): 122-131.
|
41. |
Ota K, Dambaeva S, Kim MW, et al. 1, 25-dihydroxy-vitamin D3 regulates NK-cell cytotoxicity, cytokine secretion, and degranulation in women with recurrent pregnancy losses. Eur J Immunol, 2015, 45(11): 3188-3199.
|
42. |
Shojadoost B, Behboudi S, Villanueva AI, et al. Vitamin D3 modulates the function of chicken macrophages. Res Vet Sci, 2015, 100: 45-51.
|
43. |
Manson JE, Bassuk SS, Cook NR, et al. Vitamin D, marine n-3 fatty acids, and primary prevention of cardiovascular disease current evidence. Circ Res, 2020, 126(1): 112-128.
|
44. |
周敏, 郭银凤, 宋志霞, 等. 1, 25(OH)2D3通过VDR-PPARγ通路促使高糖诱导的M1型巨噬细胞向M2型转换. 中华肾脏病杂志, 2015, 31(6): 440-450.
|
45. |
Legarth C, Grimm D, Krüger M, et al. Potential beneficial effects of vitamin d in coronary artery disease. Nutrients, 2019, 12(1): 99.
|
46. |
Li L, Qiu X, Zhang N, et al. Crosstalk between adipocytes and M2 macrophages compensates for osteopenic phenotype in the Lrp5-deficient mice. Exp Biol Med (Maywood), 2021, 246(5): 572-583.
|
47. |
Hui X, Gu P, Zhang J, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab, 2015, 22(2): 279-290.
|
48. |
Wang G, Chen JJ, Deng WY, et al. CTRP12 ameliorates atherosclerosis by promoting cholesterol efflux and inhibiting inflammatory response via the miR-155-5p/LXRα pathway. Cell Death Dis, 2021, 12(3): 254.
|
49. |
Hou Y, Yang D, Wang X, et al. Pseudoginsenoside-F11 promotes functional recovery after transient cerebral ischemia by regulating the microglia/macrophage polarization in rats. Int Immunopharmacol, 2021, 99: 107896.
|
50. |
Ueba H, Shiomi M, Brines M, et al. Suppression of coronary atherosclerosis by helix B surface peptide, a nonerythropoietic, tissue-protective compound derived from erythropoietin. Mol Med, 2013, 19(1): 195-202.
|
51. |
Cui J, Zhang F, Cao W, et al. Erythropoietin alleviates hyperglycaemia-associated inflammation by regulating macrophage polarization via the JAK2/STAT3 signalling pathway. Mol Immunol, 2018, 101: 221-228.
|