1. |
Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health, 2019, 85(1): 8.
|
2. |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019, 41(1): 19-28.
|
3. |
Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung cancer study group. Ann Thorac Surg, 1995, 60(3): 615-622.
|
4. |
Davini F, Ricciardi S, Zirafa CC, et al. Treatment of pulmonary nodule: From VATS to RATS. J Vis Surg, 2018, 4: 36.
|
5. |
Wang Q, Jiang W, Wang L, et al. Treatment principle and surgical technique of pulmonary ground glass nodules. Zhonghua Zhong Liu Za Zhi, 2019, 41(1): 6-9.
|
6. |
林凌, 赵珩. 意向性胸腔镜下解剖性肺段切除在早期肺癌中的应用. 临床外科杂志, 2017, 25(7): 495-497.
|
7. |
Cao C, Manganas C, Ang SC, et al. Video-assisted thoracic surgery versus open thoracotomy for non-small cell lung cancer: A meta-analysis of propensity score-matched patients. Interact Cardiovasc Thorac Surg, 2013, 16(3): 244-249.
|
8. |
Committee for Scientific Affairs, Sakata R, Fujii Y, et al. Thoracic and cardiovascular surgery in Japan during 2009: Annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg, 2011, 59(9): 636-667.
|
9. |
Watanabe S, Arai K, Watanabe T, et al. Use of three-dimensional computed tomographic angiography of pulmonary vessels for lung resections. Ann Thorac Surg, 2003, 75(2): 388-392.
|
10. |
Akiba T, Marushima H, Harada J, et al. Importance of preoperative imaging with 64-row three-dimensional multidetector computed tomography for safer video-assisted thoracic surgery in lung cancer. Surg Today, 2009, 39(10): 844-847.
|
11. |
Ogawa M, Kosaka N, Choyke PL, et al. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res, 2009, 69(4): 1268-1272.
|
12. |
Moody ED, Viskari PJ, Colyer CL. Non-covalent labeling of human serum albumin with indocyanine green: A study by capillary electrophoresis with diode laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl, 1999, 729(1-2): 55-64.
|
13. |
Kokudo N, Ishizawa T. Clinical application of fluorescence imaging of liver cancer using indocyanine green. Liver Cancer, 2012, 1(1): 15-21.
|
14. |
Misaki N, Chang SS, Igai H, et al. New clinically applicable method for visualizing adjacent lung segments using an infrared thoracoscopy system. J Thorac Cardiovasc Surg, 2010, 140(4): 752-756.
|
15. |
Tarumi S, Yokomise H. Video-assisted thoracoscopic segmentectomy using infrared thoracoscopy with indocyanine green. Kyobu Geka, 2016, 69(8): 671-675.
|
16. |
Oizumi H, Kato H, Endoh M, et al. Techniques to define segmental anatomy during segmentectomy. Ann Cardiothorac Surg, 2014, 3(2): 170-175.
|
17. |
丁超. 单肺通气对局部脑氧饱和度的影响及其与POCD的关系. 北京协和医学院, 2012.
|
18. |
Kuroda H, Yoshida T, Arimura T, et al. Novel development of spectra-A using indocyanine green for segmental boundary visibility in thoracoscopic segmentectomy. J Surg Res, 2018, 227: 228-233.
|
19. |
Akiba T. Utility of three-dimensional computed tomography in general thoracic surgery. Gen Thorac Cardiovasc Surg, 2013, 61(12): 676-684.
|
20. |
Abdelsattar ZM, Blackmon SH. Using novel technology to augment complex video-assisted thoracoscopic single basilar segmentectomy. J Thorac Dis, 2018, 10(Suppl 10): S1168-S1178.
|
21. |
Yajima T, Shimizu K, Mogi A, et al. Pulmonary artery compression facilitates intersegmental border visualization. Ann Thorac Surg, 2019, 108(2): e141-e143.
|
22. |
Pischik VG, Kovalenko A. The role of indocyanine green fluorescence for intersegmental plane identification during video-assisted thoracoscopic surgery segmentectomies. J Thorac Dis, 2018, 10(Suppl 31): S3704-S3711.
|
23. |
Mun M, Okumura S, Nakao M, et al. Indocyanine green fluorescence-navigated thoracoscopic anatomical segmentectomy. J Vis Surg, 2017, 3: 80.
|