1. |
Shiran A, Sagie A. Tricuspid regurgitation in mitral valve disease incidence, prognostic implications, mechanism, and management. J Am Coll Cardiol, 2009, 53(5): 401-408.
|
2. |
Färber G, Tkebuchava S, Dawson RS, et al. Minimally invasive, isolated tricuspid valve redo surgery: A safety and outcome analysis. Thorac Cardiovasc Surg, 2018, 66(7): 564-571.
|
3. |
Zack CJ, Fender EA, Chandrashekar P, et al. National trends and outcomes in isolated tricuspid valve surgery. J Am Coll Cardiol, 2017, 70(24): 2953-2960.
|
4. |
Alkhouli M, Lopez JJ, Mathew V. Transcatheter therapy for severe tricuspid regurgitation: Learning to understand the forgotten valve. J Am Coll Cardiol, 2019, 74(24): 3009-3012.
|
5. |
Zhu TY, Min XP, Zhang HB, et al. Preoperative risk factors for residual tricuspid regurgitation after isolated left-sided valve surgery: A systematic review and meta-analysis. Cardiology, 2014, 129(4): 242-249.
|
6. |
柯英杰, 陈泽锐, 黄焕雷等. 微创三尖瓣补片扩大成形用于再次心脏手术. 中国胸心血管外科临床杂志, 2018, 25(7): 577-582.
|
7. |
Chen J, Ma W, Ming Y, et al. Minimally invasive valve replacement for late tricuspid regurgitation after left-sided valve surgery. Ann Thorac Surg, 2021, 111(5): e381-e383.
|
8. |
Alqahtani F, Berzingi CO, Aljohani S, et al. Contemporary trends in the use and outcomes of surgical treatment of tricuspid regurgitation. J Am Heart Assoc, 2017, 6(12): e007597.
|
9. |
Kawsara A, Alqahtani F, Nkomo VT, et al. Determinants of morbidity and mortality associated with isolated tricuspid valve surgery. J Am Heart Assoc, 2021, 10(2): e018417.
|
10. |
Fröjd V, Folino G, Jeppsson A, et al. Mortality after tricuspid valve procedures: A 27-year, single-center experience. J Thorac Cardiovasc Surg, 2021, 161(4): 1239-1248.
|
11. |
Chen J, Wei L, Wang C. The impact of minimally invasive technique on the outcomes of isolated tricuspid valve surgery. Eur Heart J, 2021, 42(19): 1926.
|
12. |
Dreyfus J, Flagiello M, Bazire B, et al. Isolated tricuspid valve surgery: Impact of aetiology and clinical presentation on outcomes. Eur Heart J, 2020, 41(45): 4304-4317.
|
13. |
Dhoble A, Zhao Y, Vejpongsa P, et al. National 10-year trends and outcomes of isolated and concomitant tricuspid valve surgery. J Cardiovasc Surg (Torino), 2019, 60(1): 119-127.
|
14. |
Grapsa J, Gibbs JS, Cabrita IZ, et al. The association of clinical outcome with right atrial and ventricular remodelling in patients with pulmonary arterial hypertension: Study with real-time three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging, 2012, 13(8): 666-672.
|
15. |
Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension: Physiology and pathobiology. J Am Coll Cardiol, 2013, 62(25 Suppl): D22-D33.
|
16. |
Egemnazarov B, Schmidt A, Crnkovic S, et al. Pressure overload creates right ventricular diastolic dysfunction in a mouse model: Assessment by echocardiography. J Am Soc Echocardiogr, 2015, 28(7): 828-843.
|
17. |
McCann GP, Beek AM, Vonk-Noordegraaf A, et al. Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation, 2005, 112(16): e268.
|
18. |
Egemnazarov B, Crnkovic S, Nagy BM, et al. Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix Biol, 2018, 68-69: 507-521.
|
19. |
Tian F, Zhang L, Xie Y, et al. 3-dimensional versus 2-dimensional STE for right ventricular myocardial fibrosis in patients with end-stage heart failure. JACC Cardiovasc Imaging, 2021, 14(7): 1309-1320.
|
20. |
Lang RM, Singh A. Quantifying right ventricular fibrosis burden using 3D strain: Can echo approximate a virtual heart biopsy? JACC Cardiovasc Imaging, 2021, 14(7): 1321-1323.
|