1. |
2021-2026年中国心脏瓣膜市场供需现状及投资战略研究报告, 2021. Accessed on 2020-12-23. URL: https://m.huaon.com/detail/674484.html.
|
2. |
中国生物医学工程学会体外循环分会. 2019年中国心外科手术和体外循环数据白皮书. 中国体外循环杂志, 2020, 18(4): 193-196.
|
3. |
Harken DE, Soroff HS, Taylor WJ, et al. Partial and complete prostheses in aortic insufficiency. J Thorac Cardiovasc Surg, 1960, 40: 744-762.
|
4. |
Yoganathan AP, He Z, Leo HL, et al. Heart valves, mechanical. Encyclopedia of Biomaterials and Biomedical Engineering, 2004: 737-745.
|
5. |
International Organization for Standardization. ISO 5840-1: 2021. Cardiovascular implants—Cardiac valve prostheses—Part 1: General requirements. Geneva, Switzerland, 2021. URL: https://www.iso.org/standard/77033.html.
|
6. |
李守彦. 从风险分析和FMEA看人工心脏瓣膜的体外测试方法的演变. 第二届生物材料与组织工程产品质量控制国际研讨会论文集. 2011: 35-39.
|
7. |
Schoephoerster R, Chandran KB. Effect of systolic flow rate on the prediction of effective prosthetic valve orifice area. J Biomech, 1989, 22(6-7): 705-715.
|
8. |
Floersch J, Evans MC, Midha PA. Ineffective orifice area: Practical limitations of accurate EOA assessment for low-gradient heart valve prostheses. Cardiovasc Eng Technol, 2021, 12(6): 598-605.
|
9. |
Wu C, Saikrishnan N, Chalekian AJ, et al. In-vitro pulsatile flow testing of prosthetic heart valves: A round-robin study by the ISO Cardiac Valves Working Group. Cardiovasc Eng Technol, 2019, 10(3): 397-422.
|
10. |
Wang H, Cui Z, Zhou Z, et al. A single-opening&closing valve tester for direct measurement of closing volume of the heart valve. Cardiovasc Eng Technol, 2021. [Epub ahead of print].
|
11. |
Oertel F, Golczyk K, Pantele S, et al. Mitral valve restoration using the No-React(R) MitroFix™: A novel concept. J Cardiothorac Surg, 2012, 7: 82.
|
12. |
Gillinov AM, Cosgrove DM. Current status of mitral valve repair. Am Heart Hosp J, 2003, 1(1): 47-54.
|
13. |
Coutinho GF, Correia PM, Antunes MJ. Concomitant aortic and mitral surgery: To replace or repair the mitral valve? J Thorac Cardiovasc Surg, 2014, 148(4): 1386-1392.
|
14. |
Qiu Z, Chen X, Xu M, et al. Is mitral valve repair superior to replacement for chronic ischemic mitral regurgitation with left ventricular dysfunction? J Cardiothorac Surg, 2010, 5: 107.
|
15. |
Kosmas I, Aravanis N, Iakovou I, et al. Transcatheter management of valvular regurgitation beyond the aortic valve (mitral-tricuspid valve): Literature overview and future perspectives. Hellenic J Cardiol, 2020, 61(5): 299-305.
|
16. |
Siefert AW, Siskey RL. Bench models for assessing the mechanics of mitral valve repair and percutaneous surgery. Cardiovasc Eng Technol, 2015, 6(2): 193-207.
|
17. |
Oliveira D, Srinivasan J, Espino D, et al. Geometric description for the anatomy of the mitral valve: A review. J Anat, 2020, 237(2): 209-224.
|
18. |
Micali LR, Qadrouh MN, Parise O, et al. Papillary muscle intervention vs. mitral ring annuloplasty in ischemic mitral regurgitation. J Card Surg, 2020, 35(3): 645-653.
|
19. |
杨梦旭, 王颢, 荆腾, 等. 用于修复三尖瓣返流的三尖瓣塞离体试验研究. 排灌机械工程学报, 2020, 38(10): 1030-1036.
|
20. |
Jimenez JH, Soerensen DD, He Z, et al. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: An in vitro study. Ann Biomed Eng, 2003, 31(10): 1171-1181.
|
21. |
Vismara R, Pavesi A, Votta E, et al. A pulsatile simulator for the in vitro analysis of the mitral valve with tri-axial papillary muscle displacement. Int J Artif Organs, 2011, 34(4): 383-391.
|
22. |
Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation, 2002, 106(24): 3006-3008.
|
23. |
Tamadon I, Mamone V, Huan Y, et al. ValveTech: A novel robotic approach for minimally invasive aortic valve replacement. IEEE Trans Biomed Eng, 2021, 68(4): 1238-1249.
|
24. |
Cavallo A, Gasparotti E, Losi P, et al. Fabrication and in-vitro characterization of a polymeric aortic valve for minimally invasive valve replacement. J Mech Behav Biomed Mater, 2021, 115: 104294.
|
25. |
刘丽, 万辰杰, 柯林楠, 等. 经导管瓣膜瓣中瓣模式下流体力学性能体外测试及评价. 北京生物医学工程, 2021, 40(4): 393-399.
|
26. |
刘丽, 万辰杰, 李崇崇, 等. 经导管植入式人工心脏瓣膜体外脉动流性能研究. 中国药事, 2021, 35(1): 84-90.
|
27. |
Sathananthan J, Hensey M, Landes U, et al. Long-term durability of transcatheter heart valves: Insights from bench testing to 25 years. JACC Cardiovasc Interv, 2020, 13(2): 235-249.
|
28. |
Nitsche C, Kammerlander AA, Knechtelsdorfer K, et al. Determinants of bioprosthetic aortic valve degeneration. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 345-353.
|
29. |
Mehilli J. Lessons learned from in vitro durability testing of transcatheter heart valves. JACC Cardiovasc Interv, 2020, 13(2): 250-252.
|
30. |
Midha PA, Raghav V, Okafor I, et al. The effect of valve-in-valve implantation height on sinus flow. Ann Biomed Eng, 2017, 45(2): 405-412.
|
31. |
Ducci A, Pirisi F, Tzamtzis S, et al. Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: An in-vitro study. J Biomech, 2016, 49(16): 4080-4089.
|
32. |
Sadri V, Madukauwa-David ID, Yoganathan AP. In vitro evaluation of a new aortic valved conduit. J Thorac Cardiovasc Surg, 2021, 161(2): 581-590.
|
33. |
Quiroz-Arita C, Blaylock ML, Gharagozloo PE, et al. Pilot-scale open-channel raceways and flat-panel photobioreactors maintain well-mixed conditions under a wide range of mixing energy inputs. Biotechnol Bioeng, 2020, 117(4): 959-969.
|
34. |
Arjunon S, Ardana PH, Saikrishnan N, et al. Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices. J Biomech Eng, 2015, 137(4): 045001.
|
35. |
Piatti F, Sturla F, Marom G, et al. Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. J Biomech, 2015, 48(13): 3641-3649.
|
36. |
Wei ZA, Sonntag SJ, Toma M, et al. Computational fluid dynamics assessment associated with transcatheter heart valve prostheses: A position paper of the ISO Working Group. Cardiovasc Eng Technol, 2018, 9(3): 289-299.
|
37. |
符珉瑞, 高斌, 常宇, 等. 血流动力学优化在人工心脏设计中的应用. 生物医学工程学杂志, 2020, 37(6): 1000-1011.
|