1. |
Luc G, Baert V, Escutnaire J, et al. Epidemiology of out-of-hospital cardiac arrest: A French national incidence and mid-term survival rate study. Anaesth Crit Care Pain Med, 2019, 38(2): 131-135.
|
2. |
张建阁, 秦历杰, 程艳伟. 骨髓腔通路在院外心脏骤停中的应用进展及思考. 中国急救医学, 2021, 41(9): 817-820.
|
3. |
Tian S, Niu S, Zhang L, et al. National survey of do not attempt resuscitation decisions on out-of-hospital cardiac arrest in China. BMC Emerg Med, 2022, 22(1): 25.
|
4. |
李春林, 赵翠, 司迁, 等. 智慧医疗的发展现状与未来. 生命科学仪器, 2021, 19(2): 4-13.
|
5. |
贺冰洁, 陈暐烨, 刘立立, 等. 宫颈癌发病风险预测模型的系统综述. 中华流行病学杂志, 2021, 42(10): 1855-1862.
|
6. |
Lam K, Chen J, Wang Z, et al. Machine learning for technical skill assessment in surgery: A systematic review. NPJ Digit Med, 2022, 5(1): 24.
|
7. |
Heo J, Yoon JG, Park H, et al. Machine learning-based model for prediction of outcomes in acute stroke. Stroke, 2019, 50(5): 1263-1265.
|
8. |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 心脏骤停基层诊疗指南(2019年). 中华全科医师杂志, 2019, 18(11): 1034-1041.
|
9. |
张丹妮, 沈理, 张俊, 等. 胃超声检查对胃癌诊断价值的Meta分析. 中华医学超声杂志(电子版), 2021, 18(4): 344-354.
|
10. |
Shih HM, Chen YC, Chen CY, et al. Derivation and validation of the SWAP score for very early prediction of neurologic outcome in patients with out-of-hospital cardiac arrest. Ann Emerg Med, 2019, 73(6): 578-588.
|
11. |
Seki T, Tamura T, Suzuki M, et al. Outcome prediction of out-of-hospital cardiac arrest with presumed cardiac aetiology using an advanced machine learning technique. Resuscitation, 2019, 141: 128-135.
|
12. |
Pérez-Castellanos A, Martínez-Sellés M, Uribarri A, et al. Development and external validation of an early prognostic model for survivors of out-of-hospital cardiac arrest. Rev Esp Cardiol (Engl Ed), 2019, 72(7): 535-542.
|
13. |
Pätz T, Stelzig K, Pfeifer R, et al. Age-associated outcomes after survived out-of-hospital cardiac arrest and subsequent target temperature management. Acta Anaesthesiol Scand, 2019, 63(8): 1079-1088.
|
14. |
Park JH, Shin SD, Song KJ, et al. Prediction of good neurological recovery after out-of-hospital cardiac arrest: A machine learning analysis. Resuscitation, 2019, 142: 127-135.
|
15. |
Pareek N, Kordis P, Beckley-Hoelscher N, et al. A practical risk score for early prediction of neurological outcome after out-of-hospital cardiac arrest: MIRACLE2. Eur Heart J, 2020, 41(47): 4508-4517.
|
16. |
Okada Y, Kiguchi T, Irisawa T, et al. Development and validation of a clinical score to predict neurological outcomes in patients with out-of-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation. JAMA Netw Open, 2020, 3(11): e2022920.
|
17. |
Okada K, Ohde S, Otani N, et al. Prediction protocol for neurological outcome for survivors of out-of-hospital cardiac arrest treated with targeted temperature management. Resuscitation, 2012, 83(6): 734-739.
|
18. |
Kwon JM, Jeon KH, Kim HM, et al. Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes. Resuscitation, 2019, 139: 84-91.
|
19. |
Kim JH, Kim MJ, You JS, et al. Multimodal approach for neurologic prognostication of out-of-hospital cardiac arrest patients undergoing targeted temperature management. Resuscitation, 2019, 134: 33-40.
|
20. |
Heo JH, Kim T, Shin J, et al. Prediction of neurological outcomes in out-of-hospital cardiac arrest survivors immediately after return of spontaneous circulation: Ensemble technique with four machine learning models. J Korean Med Sci, 2021, 36(28): e187.
|
21. |
Harford S, Darabi H, Del Rios M, et al. A machine learning based model for out of hospital cardiac arrest outcome classification and sensitivity analysis. Resuscitation, 2019, 138: 134-140.
|
22. |
Goto Y, Maeda T, Nakatsu-Goto Y. Decision tree model for predicting long-term outcomes in children with out-of-hospital cardiac arrest: A nationwide, population-based observational study. Crit Care, 2014, 18(3): R133.
|
23. |
Einav S, Kaufman N, Algur N, et al. Brain biomarkers and management of uncertainty in predicting outcome of cardiopulmonary resuscitation: A nomogram paints a thousand words. Resuscitation, 2013, 84(8): 1083-1088.
|
24. |
Eertmans W, Tran TMP, Genbrugge C, et al. A prediction model for good neurological outcome in successfully resuscitated out-of-hospital cardiac arrest patients. Scand J Trauma Resusc Emerg Med, 2018, 26(1): 93.
|
25. |
Dutta A, Alirhayim Z, Masmoudi Y, et al. Brain natriuretic peptide as a marker of adverse neurological outcomes among survivors of cardiac arrest. J Intensive Care Med, 2022, 37(6): 803-809.
|
26. |
Cheong RW, Li H, Doctor NE, et al. Termination of resuscitation rules to predict neurological outcomes in out-of-hospital cardiac arrest for an intermediate life support prehospital system. Prehosp Emerg Care, 2016, 20(5): 623-629.
|
27. |
Cheng CY, Chiu IM, Zeng WH, et al. Machine learning models for survival and neurological outcome prediction of out-of-hospital cardiac arrest patients. Biomed Res Int, 2021, 2021: 9590131.
|
28. |
Andersson P, Johnsson J, Björnsson O, et al. Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm. Crit Care, 2021, 25(1): 83.
|
29. |
Ahn S, Lee BK, Youn CS, et al. Predictors of good neurologic outcome after resuscitation beyond 30 min in out-of-hospital cardiac arrest patients undergoing therapeutic hypothermia. Intern Emerg Med, 2018, 13(3): 413-419.
|
30. |
Ryoo SM, Jeon SB, Sohn CH, et al. Predicting outcome with diffusion-weighted imaging in cardiac arrest patients receiving hypothermia therapy: Multicenter retrospective cohort study. Crit Care Med, 2015, 43(11): 2370-2377.
|
31. |
Kim HS, Park KN, Kim SH, et al. Prognostic value of OHCA, C-GRApH and CAHP scores with initial neurologic examinations to predict neurologic outcomes in cardiac arrest patients treated with targeted temperature management. PLoS One, 2020, 15(4): e0232227.
|
32. |
李发挥, 李雁浩, 桂逢烯, 等. 声空化对巨噬细胞损伤效应的人工神经网络自适应模型辨识. 中国超声医学杂志, 2020, 36(3): 269-272.
|
33. |
刘雨安, 杨小文, 李乐之. 机器学习在疾病预测的应用研究进展. 护理学报, 2021, 28(7): 30-34.
|
34. |
崔建伟, 赵哲, 杜小勇. 支撑机器学习的数据管理技术综述. 软件学报, 2021, 32(3): 604-621.
|
35. |
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol, 2020, 9(2): 14.
|
36. |
Connor CW. Artificial intelligence and machine learning in anesthesiology. Anesthesiology, 2019, 131(6): 1346-1359.
|
37. |
Arshaghi A, Ashourian M, Ghabeli L. Denoising medical images using machine learning, deep learning approaches: A survey. Curr Med Imaging, 2021, 17(5): 578-594.
|
38. |
李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述. 计算机工程与应用, 2019, 55(24): 10-19.
|
39. |
李舵, 董超群, 司品超, 等. 神经网络验证和测试技术研究综述. 计算机工程与应用, 2021, 57(22): 53-67.
|
40. |
夏佳志, 李杰, 陈思明, 等. 可视化与人工智能交叉研究综述. 中国科学:信息科学, 2021, 51(11): 1777-1801.
|
41. |
纪守领, 杜天宇, 李进锋, 等. 机器学习模型安全与隐私研究综述. 软件学报, 2021, 32(1): 41-67.
|
42. |
Chen S, Lachance BB, Gao L, et al. Targeted temperature management and early neuro-prognostication after cardiac arrest. J Cereb Blood Flow Metab, 2021, 41(6): 1193-1209.
|