1. |
Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke, 2021, 16(2): 217-221.
|
2. |
Dilaveris PE, Kennedy HL. Silent atrial fibrillation: Epidemiology, diagnosis, and clinical impact. Clin Cardiol, 2017, 40(6): 413-418.
|
3. |
Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): A community-based cohort study Lancet, 2009, 373(9665): 739-745.
|
4. |
Chamberlain AM, Agarwal SK, Folsom AR, et al. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities study). Am J Cardiol, 2011, 107(1): 85-91.
|
5. |
Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: The CHARGE‐AF consortium. J Am Heart Ass, 2013, 2(2): e000102.
|
6. |
Li Y G, Pastori D, Farcomeni A, et al. A simple clinical risk score (C2HEST) for predicting incident atrial fibrillation in Asian subjects: Derivation in 471, 446 Chinese subjects, with internal validation and external application in 451, 199 Korean subjects. Chest, 2019, 155(3): 510-518.
|
7. |
Suenari K, Chao TF, Liu CJ, et al. Usefulness of HATCH score in the prediction of new-onset atrial fibrillation for Asians. Medicine, 2017, 96(1): e5597.
|
8. |
Tseng AS, Noseworthy PA. Prediction of atrial fibrillation using machine learning: A review. Front Physiol, 2021, 12: 752317.
|
9. |
Hill NR, Ayoubkhani D, McEwan P, et al. Predicting atrial fibrillation in primary care using machine learning. PLoS one, 2019, 14(11): e0224582.
|
10. |
Tiwari P, Colborn KL, Smith DE, et al. Assessment of a machine learning model applied to harmonized electronic health record data for the prediction of incident atrial fibrillation. JAMA Netw Open, 2020, 3(1): e1919396-e1919396.
|
11. |
Sekelj S, Sandler B, Johnston E, et al. Detecting undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective cohort study. Eur J Prev Cardiol, 2021, 28(6): 598-605.
|
12. |
Nakatani Y, Sakamoto T, Yamaguchi Y, et al. Left atrial wall thickness is associated with the low-voltage area in patients with paroxysmal atrial fibrillation. J Interv Card Electrophysiol, 2020, 58(3): 315-321.
|
13. |
Siebermair J, Suksaranjit P, McGann CJ, et al. Atrial fibrosis in non–atrial fibrillation individuals and prediction of atrial fibrillation by use of late gadolinium enhancement magnetic resonance imaging. J Cardiovasc Electrophysiol, 2019, 30(4): 550-556.
|
14. |
Dawwas GK, Barnes GD. Outcomes of direct oral anticoagulants in patients with atrial fibrillation and valvular heart disease. Curr Cardiol Rep, 2022: 1-8.
|
15. |
吴越峰, 王琪, 吴明. 机器学习技术在食管癌研究领域中应用的现状与展望. 中国胸心血管外科临床杂志, 2022, 29(6): 770-776.
|
16. |
Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations. newsletter, 2004, 6(1): 20-29.
|
17. |
Breiman L. Bagging predictors. Machine Learning, 1996, 24(2): 123-140.
|
18. |
Bühlmann P, Yu B. Boosting Wiley Interdisciplinary Reviews. Computational Statistics, 2010, 2(1): 69-74.
|
19. |
Breiman L. Random forests. Machine Learning, 2001, 45(1): 5-32.
|
20. |
Chen T, Guestrin C. Xgboost: A scalable tree boosting system//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794.
|
21. |
Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree. 31st Annual Conference on Neural Information Processing Systems (NIPS), 2017, 30: 3146-1354.
|
22. |
Lundberg SM, Lee S I. A unified approach to interpreting model predictions. 31st Annual Conference on Neural Information Processing Systems (NIPS), 2017, 30: 4765-4774.
|
23. |
Fawcett T. An introduction to ROC analysis pattern recognition letters, 2006, 27(8): 861-874.
|
24. |
Ozenne B, Subtil F, Maucort-Boulch D. The precision–recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases. J Clin Epidemiol, 2015, 68(8): 855-859.
|
25. |
Boyd K, Eng KH, Page CD. Area under the precision-recall curve: point estimates and confidence intervals//Joint European conference on machine learning and knowledge discovery in databases. Springer: Berlin, Heidelberg, 2013. 451-466.
|
26. |
Seewoester T, Spampinato RA, Sommer P, et al. Left atrial size and total atrial emptying fraction in atrial fibrillation progression. Heart Rhythm, 2019, 16(11): 1605-1610.
|
27. |
Cui Q, Zhang W, Wang H, et al. Left and right atrial size and the occurrence predictors in patients with paroxysmal atrial fibrillation. Int J Cardiol, 2008, 130(1): 69-71.
|
28. |
Burstein B, Nattel S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol, 2008, 51(8): 802-809.
|
29. |
Qiu D, Peng L, Ghista DN, et al. Left atrial remodeling mechanisms associated with atrial fibrillation. Cardiovasc Eng Technol, 2021, 12(3): 361-372.
|
30. |
Vaziri SM, Larson MG, Benjamin EJ, et al. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation, 1994, 89(2): 724-730.
|
31. |
Kalifa J, Jalife J, Zaitsev AV, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation, 2003, 108(6): 668-671.
|
32. |
van Brakel TJ, van der Krieken T, Westra SW, et al. Fibrosis and electrophysiological characteristics of the atrial appendage in patients with atrial fibrillation and structural heart disease. J Interv Card Electrophysiol, 2013, 38(2): 85-93.
|
33. |
Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ Res, 2017, 120(9): 1501-1517.
|
34. |
Jorfida M, Antolini M, Cerrato E, et al. Cryptogenic ischemic stroke and prevalence of asymptomatic atrial fibrillation: A prospective study. J Cardiovasc Med (Hagerstown), 2016, 17(12): 863-869.
|
35. |
Christensen LM, Krieger DW, Højberg S, et al. Paroxysmal atrial fibrillation occurs often in cryptogenic ischaemic stroke. Final results from the SURPRISE study. Eur J Neurol, 2014, 21(6): 884-889.
|
36. |
何凯悦, 杨翠微. 基于心外膜标测的心房易颤性评估. 生物医学工程学杂志, 2020, 37(3): 487-495, 501.
|