1. |
Walter K. Pulmonary nodules. JAMA, 2021, 326(15): 1544.
|
2. |
Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: A review. JAMA, 2022, 327(3): 264-273.
|
3. |
Li ZZ, Huang YL, Song HJ, et al. The value of 18F-FDG-PET/CT in the diagnosis of solitary pulmonary nodules: A meta-analysis. Medicine (Baltimore), 2018, 97(12): e0130.
|
4. |
Hadique S, Jain P, Hadi Y, et al. Utility of FDG PET/CT for assessment of lung nodules identified during low dose computed tomography screening. BMC Med Imaging, 2020, 20(1): 69.
|
5. |
邵晓梁, 牛荣, 王跃涛, 等. 基于18F-FDGPET/CT的磨玻璃结节早期肺腺癌浸润性预测模型的构建及验证. 中华核医学与分子影像杂志, 2022, 42(7): 385-390.
|
6. |
Xie Y, Zhao H, Guo Y, et al. A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer. Eur Radiol, 2021, 31(8): 6030-6038.
|
7. |
Niyonkuru A, Chen X, Bakari KH, et al. Evaluation of the diagnostic efficacy of 18F-Fluorine-2-Deoxy-D-Glucose PET/CT for lung cancer and pulmonary tuberculosis in a tuberculosis-endemic country. Cancer Med, 2020, 9(3): 931-942.
|
8. |
Susam S, Çinkooğlu A, Ceylan KC, et al. Diagnostic success of transthoracic needle biopsy and PET-CT for 1 to 2 cm solid indeterminate pulmonary nodules. Clin Respir J, 2020, 14(5): 453-461.
|
9. |
Li Y, Li X, Li H, et al. Genomic characterisation of pulmonary subsolid nodules: Mutational landscape and radiological features. Eur Respir J, 2020, 55(2): 1901409.
|
10. |
Peng M, Yu G, Zhang C, et al. Three-dimensional substructure measurements for the differential diagnosis of ground glass nodules. BMC Pulm Med, 2017, 17(1): 93.
|
11. |
Jiang B, Li N, Shi X, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT. Radiology, 2022, 303(1): 202-212.
|
12. |
Wang YW, Wang JW, Yang SX, et al. Proposing a deep learning-based method for improving the diagnostic certainty of pulmonary nodules in CT scan of chest. Eur Radiol, 2021, 31(11): 8160-8167.
|
13. |
Astaraki M, Yang G, Zakko Y, et al. A comparative study of radiomics and deep-learning based methods for pulmonary nodule malignancy prediction in low dose CT images. Front Oncol, 2021, 11: 737368.
|
14. |
Gong J, Liu J, Hao W, et al. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Eur Radiol, 2020, 30(4): 1847-1855.
|
15. |
Sibille L, Seifert R, Avramovic N, et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology, 2020, 294(2): 445-452.
|