1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008, 83(5): 584-594.
|
3. |
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018, 24(5): 541-550.
|
4. |
Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39(1): 1-10.
|
5. |
Kargl J, Busch SE, Yang GH, et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat Commun, 2017, 8: 14381.
|
6. |
Kim DH, Kim H, Choi YJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med, 2019, 51(8): 1-13.
|
7. |
Oh MS, Anker JF, Chae YK. High gene expression of estrogen and progesterone receptors is associated with decreased T cell infiltration in patients with NSCLC. Cancer Treat Res Commun, 2021, 27: 100317.
|
8. |
Guo W, Liu S, Zhang X, et al. The coexpression of multi-immune inhibitory receptors on T lymphocytes in primary non-small-cell lung cancer. Drug Des Devel Ther, 2017, 11: 3367-3376.
|
9. |
Chen R, Huang M, Yang X, et al. CALR-TLR4 complex inhibits non-small cell lung cancer progression by regulating the migration and maturation of dendritic cells. Front Oncol, 2021, 11: 743050.
|
10. |
Mantovani A, Bottazzi B, Colotta F, et al. The origin and function of tumor-associated macrophages. Immunol Today, 1992, 13(7): 265-270.
|
11. |
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol, 2011, 11(11): 723-737.
|
12. |
Chanmee T, Ontong P, Konno K, et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel), 2014, 6(3): 1670-1690.
|
13. |
Casanova-Acebes M, Dalla E, Leader AM, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature, 2021, 595(7868): 578-584.
|
14. |
Aloe C, Wang H, Vlahos R, et al. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res, 2021, 10(6): 2806-2818.
|
15. |
Najafi S, Mirshafiey A. The role of T helper 17 and regulatory T cells in tumor microenvironment. Immunopharmacol Immunotoxicol, 2019, 41(1): 16-24.
|
16. |
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med, 2018, 50(8): 1-14.
|
17. |
Zhou X, Xu Y, Zhu L, et al. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in limited DNA sequencing based on tube and droplet. Micromachines (Basel), 2020, 11(7): 645.
|
18. |
Kumar R, Ichihashi Y, Kimura S, et al. A high-throughput method for illumina RNA-Seq library preparation. Front Plant Sci, 2012, 3: 202.
|
19. |
Kumar KR, Cowley MJ, Davis RL. Next-generation sequencing and emerging technologies. Semin Thromb Hemost, 2019, 45(7): 661-673.
|
20. |
1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature, 2015, 526(7571): 68-74.
|
21. |
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): High-performance genomics data visualization and exploration. Brief Bioinform, 2013, 14(2): 178-192.
|
22. |
Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol, 2011, 29(1): 24-26.
|
23. |
Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem, 2015, 61(1): 124-135.
|
24. |
Lavin Y, Kobayashi S, Leader A, et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell, 2017, 169(4): 750-765.
|
25. |
Kim N, Kim HK, Lee K, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun, 2020, 11(1): 2285.
|
26. |
Song Q, Hawkins GA, Wudel L, et al. Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq. Cancer Med, 2019, 8(6): 3072-3085.
|
27. |
Galbraith LCA, Mui E, Nixon C, et al. PPAR-gamma induced Akt3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene, 2021, 40(13): 2355-2366.
|
28. |
Wu F, Fan J, He Y, et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun, 2021, 12(1): 2540.
|
29. |
Inamura K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: Tumor initiation and progression. Int J Mol Sci, 2018, 19(4): 1259.
|
30. |
Wang Z, Li Z, Zhou K, et al. Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat Commun, 2021, 12(1): 6500.
|
31. |
Huang ZY, Shao MM, Zhang JC, et al. Single-cell analysis of diverse immune phenotypes in malignant pleural effusion. Nat Commun, 2021, 12(1): 6690.
|
32. |
Kim KT, Lee HW, Lee HO, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol, 2015, 16(1): 127.
|
33. |
Xiong D, Pan J, Yin Y, et al. Novel mutational landscapes and expression signatures of lung squamous cell carcinoma. Oncotarget, 2017, 9(7): 7424-7441.
|
34. |
Min JW, Kim WJ, Han JA, et al. Identification of distinct tumor subpopulations in lung adenocarcinoma via single-cell RNA-seq. PLoS One, 2015, 10(8): e0135817.
|
35. |
Suber TL, Nikolli I, O'Brien ME, et al. FBXO17 promotes cell proliferation through activation of Akt in lung adenocarcinoma cells. Respir Res, 2018, 19(1): 206.
|
36. |
Ma KY, Schonnesen AA, Brock A, et al. Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response-related genes. JCI Insight, 2019, 4(4): e121387.
|
37. |
Hu Y, Xu C, Ren J, et al. Exposure to tobacco smoking induces a subset of activated tumor-resident Tregs in non-small cell lung cancer. Transl Oncol, 2022, 15(1): 101261.
|
38. |
Ren X, Zhang Z. Understanding tumor-infiltrating lymphocytes by single cell RNA sequencing. Adv Immunol, 2019, 144: 217-245.
|
39. |
Jiang A, Wang J, Liu N, et al. Integration of single-cell RNA sequencing and bulk RNA sequencing data to establish and validate a prognostic model for patients with lung adenocarcinoma. Front Genet, 2022, 13: 833797.
|
40. |
Ruan H, Zhou Y, Shen J, et al. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis. Clin Transl Med, 2020, 10(8): e246.
|
41. |
Van Damme H, Dombrecht B, Kiss M, et al. Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy. J Immunother Cancer, 2021, 9(2): e001749.
|
42. |
Maroni G, Bassal MA, Krishnan I, et al. Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer. Commun Biol, 2021, 4(1): 370.
|
43. |
Pan J, Chen Y, Zhang Q, et al. Inhibition of lung tumorigenesis by a small molecule CA170 targeting the immune checkpoint protein VISTA. Commun Biol, 2021, 4(1): 906.
|
44. |
Leader AM, Grout JA, Maier BB, et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell, 2021, 39(12): 1594-1609.
|
45. |
Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4): 707-723.
|
46. |
Suzuki A, Matsushima K, Makinoshima H, et al. Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol, 2015, 16(1): 66.
|
47. |
Granchi C, Fortunato S, Minutolo F. Anticancer agents interacting with membrane glucose transporters. Medchemcomm, 2016, 7(9): 1716-1729.
|
48. |
Na KJ, Choi H, Oh HR, et al. Reciprocal change in glucose metabolism of cancer and immune cells mediated by different glucose transporters predicts immunotherapy response. Theranostics, 2020, 10(21): 9579-9590.
|