1. |
Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: New insights into disease progression, genetics, and molecular basis. Circulation, 2014, 129(21): 2158-2170.
|
2. |
Delling FN, Rong J, Larson MG, et al. Evolution of mitral valve prolapse: Insights from the Framingham heart study. Circulation, 2016, 133(17): 1688-1695.
|
3. |
van Wijngaarden AL, Kruithof BPT, Vinella T, et al. Characterization of degenerative mitral valve disease: Differences between fibroelastic deficiency and Barlow's disease. J Cardiovasc Dev Dis, 2021, 8(2): 23.
|
4. |
Hjortnaes J, Keegan J, Bruneval P, et al. Comparative histopathological analysis of mitral valves in Barlow disease and fibroelastic deficiency. Semin Thorac Cardiovasc Surg, 2016, 28(4): 757-767.
|
5. |
Hei S, Iwataki M, Jang JY, et al. Relations of augmented systolic annular expansion and leaflet/papillary muscle dynamics in late-systolic mitral valve prolapse evaluated by echocardiography with a speckle tracking analysis. Int Heart J, 2020, 61(5): 970-978.
|
6. |
Parwani P, Avierinos JF, Levine RA, et al. Mitral valve prolapse: Multimodality imaging and genetic insights. Prog Cardiovasc Dis, 2017, 60(3): 361-369.
|
7. |
Freed LA, Levy D, Levine RA, et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med, 1999, 341(1): 1-7.
|
8. |
Perazzolo Marra M, Basso C. Mechanical dispersion and arrhythmic mitral valve prolapse: Aubstrate and trigger in electrical instability. Heart, 2019, 105(14): 1053-1054.
|
9. |
Dziadzko V, Clavel MA, Dziadzko M, et al. Outcome and undertreatment of mitral regurgitation: A community cohort study. Lancet, 2018, 391(10124): 960-969.
|
10. |
Meester JAN, Verstraeten A, Schepers D, et al. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Ann Cardiothorac Surg, 2017, 6(6): 582-594.
|
11. |
Spartalis M, Tzatzaki E, Spartalis E, et al. Mitral valve prolapse: An underestimated cause of sudden cardiac death—A current review of the literature. J Thorac Dis, 2017, 9(12): 5390-5398.
|
12. |
Thacoor A. Mitral valve prolapse and Marfan syndrome. Congenit Heart Dis, 2017, 12(4): 430-434.
|
13. |
Gasser S, Reichenspurner H, Girdauskas E. Genomic analysis in patients with myxomatous mitral valve prolapse: Current state of knowledge. BMC Cardiovasc Disord, 2018, 18(1): 41.
|
14. |
Freed LA, Benjamin EJ, Levy D, et al. Mitral valve prolapse in the general population: The benign nature of echocardiographic features in the Framingham Heart Study. J Am Coll Cardiol, 2002, 40(7): 1298-1304.
|
15. |
Disse S, Abergel E, Berrebi A, et al. Mapping of a first locus for autosomal dominant myxomatous mitral-valve prolapse to chromosome 16p11. 2-p12. 1. Am J Hum Genet, 1999, 65(5): 1242-1251.
|
16. |
Freed LA, Acierno JS, Dai D, et al. A locus for autosomal dominant mitral valve prolapse on chromosome 11p15. 4. Am J Hum Genet, 2003, 72(6): 1551-1559.
|
17. |
Nesta F, Leyne M, Yosefy C, et al. New locus for autosomal dominant mitral valve prolapse on chromosome 13: Clinical insights from genetic studies. Circulation, 2005, 112(13): 2022-2030.
|
18. |
Le Tourneau T, Le Scouarnec S, Cueff C, et al. New insights into mitral valve dystrophy: A Filamin-A genotype-phenotype and outcome study. Eur Heart J, 2018, 39(15): 1269-1277.
|
19. |
Kim KJ, Kim HK, Park JB, et al. Transthoracic echocardiographic findings of mitral regurgitation caused by commissural prolapse. JACC Cardiovasc Imaging, 2018, 11(6): 925-926.
|
20. |
Militaru S, Bonnefous O, Hami K, et al. Validation of semiautomated quantification of mitral valve regurgitation by three-dimensional color Doppler transesophageal echocardiography. J Am Soc Echocardiogr, 2020, 33(3): 342-354.
|
21. |
Berdejo J, Shiota M, Mihara H, et al. Vena contracta analysis by color Doppler three-dimensional transesophageal echocardiography shows geometrical differences between prolapse and pseudoprolapse in eccentric mitral regurgitation. Echocardiography, 2017, 34(5): 683-689.
|
22. |
Gripari P, Mapelli M, Bellacosa I, et al. Transthoracic echocardiography in patients undergoing mitral valve repair: Comparison of new transthoracic 3D techniques to 2D transoesophageal echocardiography in the localization of mitral valve prolapse. Int J Cardiovasc Imaging, 2018, 34(7): 1099-1107.
|
23. |
Garg P, Swift AJ, Zhong L, et al. Assessment of mitral valve regurgitation by cardiovascular magnetic resonance imaging. Nat Rev Cardiol, 2020, 17(5): 298-312.
|
24. |
Durst R, Sauls K, Peal DS, et al. Mutations in DCHS1 cause mitral valve prolapse. Nature, 2015, 525(7567): 109-113.
|
25. |
Oda H, Sato T, Kunishima S, et al. Exon skipping causes atypical phenotypes associated with a loss-of-function mutation in FLNA by restoring its protein function. Eur J Hum Genet, 2016, 24(3): 408-414.
|
26. |
Vanem TT, Geiran OR, Krohg-Sørensen K, et al. Survival, causes of death, and cardiovascular events in patients with Marfan syndrome. Mol Genet Genomic Med, 2018, 6(6): 1114-1123.
|
27. |
Mühlstädt K, De Backer J, von Kodolitsch Y, et al. Case-matched comparison of cardiovascular outcome in Loeys-Dietz syndrome versus Marfan syndrome. J Clin Med, 2019, 8(12): 2079.
|
28. |
Morningstar JE, Nieman A, Wang C, et al. Mitral valve prolapse and its motley crew-syndromic prevalence, pathophysiology, and progression of a common heart condition. J Am Heart Assoc, 2021, 10(13): e020919.
|
29. |
Robinson PN, Arteaga-Solis E, Baldock C, et al. The molecular genetics of Marfan syndrome and related disorders. J Med Genet, 2006, 43(10): 769-787.
|
30. |
Sakai LY, Keene DR, Renard M, et al. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene, 2016, 591(1): 279-291.
|
31. |
Gong B, Yang L, Wang Q, et al. Mutation screening in the FBN1 gene responsible for Marfan syndrome and related disorder in Chinese families. Mol Genet Genomic Med, 2019, 7(4): e00594.
|
32. |
De Cario R, Sticchi E, Lucarini L, et al. Role of TGFBR1 and TGFBR2 genetic variants in Marfan syndrome. J Vasc Surg, 2018, 68(1): 225-233.
|
33. |
Bitarafan F, Razmara E, Khodaeian M, et al. Three novel variants identified in FBN1 and TGFBR2 in seven Iranian families with suspected Marfan syndrome. Mol Genet Genomic Med, 2020, 8(8): e1274.
|
34. |
Attias D, Stheneur C, Roy C, et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation, 2009, 120(25): 2541-2549.
|
35. |
Milewicz DM, Braverman AC, De Backer J, et al. Marfan syndrome. Nat Rev Dis Primers, 2021, 7(1): 64.
|
36. |
Ramirez F, Caescu C, Wondimu E, et al. Marfan syndrome; A connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biol, 2018, 71-72: 82-89.
|
37. |
van Andel MM, Indrakusuma R, Jalalzadeh H, et al. Long-term clinical outcomes of losartan in patients with Marfan syndrome: Follow-up of the multicentre randomized controlled COMPARE trial. Eur Heart J, 2020, 41(43): 4181-4187.
|
38. |
Camerota L, Ritelli M, Wischmeijer A, et al. Genotypic categorization of Loeys-Dietz syndrome based on 24 novel families and literature data. Genes (Basel), 2019, 10(10): 764.
|
39. |
Luo X, Deng S, Jiang Y, et al. Identification of a pathogenic TGFBR2 variant in a patient with Loeys-Dietz syndrome. Front Genet, 2020, 11: 479.
|
40. |
Courtois A, Coppieters W, Bours V, et al. A novel SMAD3 mutation caused multiple aneurysms in a patient without osteoarthritis symptoms. Eur J Med Genet, 2017, 60(4): 228-231.
|
41. |
Trochu JN, Kyndt F, Schott JJ, et al. Clinical characteristics of a familial inherited myxomatous valvular dystrophy mapped to Xq28. J Am Coll Cardiol, 2000, 35(7): 1890-1897.
|
42. |
Popa MO, Irimia AM, Papagheorghe MN, et al. The mechanisms, diagnosis and management of mitral regurgitation in mitral valve prolapse and hypertrophic cardiomyopathy. Discoveries (Craiova), 2016, 4(2): e61.
|
43. |
Kyndt F, Gueffet JP, Probst V, et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation, 2007, 115(1): 40-49.
|
44. |
Ritelli M, Morlino S, Giacopuzzi E, et al. Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA. Am J Med Genet A, 2017, 173(1): 169-176.
|
45. |
Mercer CL, Andreoletti G, Carroll A, et al. Familial ebstein anomaly: Whole exome sequencing identifies novel phenotype associated with FLNA. Circ Cardiovasc Genet, 2017, 10(6): e001683.
|
46. |
Dina C, Bouatia-Naji N, Tucker N, et al. Genetic association analyses highlight biological pathways underlying mitral valve prolapse. Nat Genet, 2015, 47(10): 1206-1211.
|
47. |
Dye B, Lincoln J. The endocardium and heart valves. Cold Spring Harb Perspect Biol, 2020, 12(12): a036723.
|
48. |
Poelmann RE, Gittenberger-de Groot AC. Hemodynamics in cardiac development. J Cardiovasc Dev Dis, 2018, 5(4): 54.
|
49. |
Chakrabarti M, Al-Sammarraie N, Gebere MG, et al. Transforming growth factor Beta3 is required for cardiovascular development. J Cardiovasc Dev Dis, 2020, 7(2): 19.
|
50. |
Ma M, Li P, Shen H, et al. Dysregulated endocardial TGFβ signaling and mesenchymal transformation result in heart outflow tract septation failure. Dev Biol, 2016, 409(1): 272-276.
|
51. |
Dituri F, Cossu C, Mancarella S, et al. The interactivity between TGFβ and BMP signaling in organogenesis, fibrosis, and cancer. Cells, 2019, 8(10): 1130.
|
52. |
Beets K, Staring MW, Criem N, et al. BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks. BMC Dev Biol, 2016, 16(1): 34.
|
53. |
Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, et al. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol, 2019, 247(1): 9-20.
|
54. |
Yang J, Mishina Y. Generation and identification of genetically modified mice for BMP receptors. Methods Mol Biol, 2019, 1891: 165-177.
|
55. |
Tallquist MD, Soriano P. Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function. Genesis, 2000, 26(2): 113-115.
|