1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Akutsu Y, Matsubara H. The significance of lymph node status as a prognostic factor for esophageal cancer. Surg Today, 2011, 41(9): 1190-1195.
|
3. |
Tachimori Y, Nagai Y, Kanamori N, et al. Pattern of lymph node metastases of esophageal squamous cell carcinoma based on the anatomical lymphatic drainage system. Dis Esophagus, 2011, 24(1): 33-38.
|
4. |
Nafteux P, Depypere L, Van Veer H, et al. Principles of esophageal cancer surgery, including surgical approaches and optimal node dissection (2- vs. 3-field). Ann Cardiothorac Surg, 2017, 6(2): 152-158.
|
5. |
Wang F, Zheng Y, Wang Z, et al. Nodal skip metastasis in esophageal squamous cell carcinoma patients undergoing three-field lymphadenectomy. Ann Thorac Surg, 2017, 104(4): 1187-1193.
|
6. |
Oliver G, Kipnis J, Randolph GJ, et al. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell, 2020, 182(2): 270-296.
|
7. |
Valastyan S, Weinberg RA. Tumor metastasis: Molecular insights and evolving paradigms. Cell, 2011, 147(2): 275-292.
|
8. |
Lee BS, Jang JY, Seo C, et al. Crosstalk between head and neck cancer cells and lymphatic endothelial cells promotes tumor metastasis via CXCL5-CXCR2 signaling. FASEB J, 2021, 35(1): e21181.
|
9. |
Ferris RL, Lotze MT, Leong SP, et al. Lymphatics, lymph nodes and the immune system: Barriers and gateways for cancer spread. Clin Exp Metastasis, 2012, 29(7): 729-736.
|
10. |
Liu ZY, Qiu HO, Yuan XJ, et al. Suppression of lymphangiogenesis in human lymphatic endothelial cells by simultaneously blocking VEGF-C and VEGF-D/VEGFR-3 with norcantharidin. Int J Oncol, 2012, 41(5): 1762-1772.
|
11. |
Rebhun RB, Langley RR, Yokoi K, et al. Targeting receptor tyrosine kinase on lymphatic endothelial cells for the therapy of colon cancer lymph node metastasis. Neoplasia, 2006, 8(9): 747-757.
|
12. |
于亮, 庞作良, 张煜. 胸段食管癌腹腔淋巴结转移的临床分析. 新疆医科大学学报, 2007, 12: 1390-1392.
|
13. |
Kuge K, Murakami G, Mizobuchi S, et al. Submucosal territory of the direct lymphatic drainage system to the thoracic duct in the human esophagus. J Thorac Cardiovasc Surg, 2003, 125(6): 1343-1349.
|
14. |
Saito H, Sato T, Miyazaki M. Extramural lymphatic drainage from the thoracic esophagus based on minute cadaveric dissections: Fundamentals for the sentinel node navigation surgery for the thoracic esophageal cancers. Surg Radiol Anat, 2007, 29(7): 531-542.
|
15. |
陈远岷, 刘德森, 潘琪, 等. 胸段食管癌重点清扫淋巴结的临床病理特点及预后分析. 中华临床医师杂志(电子版), 2014, 8(13): 2403-2407.
|
16. |
徐成胜, 王鹏. 胸段食管鳞状细胞癌淋巴结转移规律研究. 中国实验诊断学, 2022, 26(2): 190-193.
|
17. |
Kim HE, Yang YH, Park BJ, et al. Skeletonizing en bloc esophagectomy revisited: Oncologic outcome in association with the presence of thoracic duct lymph nodes. Ann Surg Oncol, 2022, 29(8): 4909-4917.
|
18. |
Japan Esophageal Society. Japanese classification of esophageal cancer, 11th edition: PartⅠ. Esophagus, 2017, 14(1): 1-36.
|
19. |
Japan Esophageal Society. Japanese classification of esophageal cancer, 11th edition: PartⅡandⅢ. Esophagus, 2017, 14(1): 37-65.
|
20. |
Dong Y, Guan H, Huang W, et al. Precise delineation of clinical target volume for crossing-segments thoracic esophageal squamous cell carcinoma based on the pattern of lymph node metastases. J Thorac Dis, 2015, 7(12): 2313-2320.
|
21. |
Hagens ERC, van Berge Henegouwen MI, Gisbertz SS. Distribution of lymph node metastases in esophageal carcinoma patients undergoing upfront surgery: A systematic review. Cancers (Basel), 2020, 12(6): 1592.
|
22. |
Lund AW. Rethinking lymphatic vessels and antitumor immunity. Trends Cancer, 2016, 2(10): 548-551.
|
23. |
Shields JD, Kourtis IC, Tomei AA, et al. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science, 2010, 328(5979): 749-752.
|
24. |
Takeda A, Hollmén M, Dermadi D, et al. Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils. Immunity, 2019, 51(3): 561-572.
|
25. |
Zhang F, Zarkada G, Yi S, et al. Lymphatic endothelial cell junctions: Molecular regulation in physiology and diseases. Front Physiol, 2020, 11: 509.
|
26. |
樊天斐, 高冉, 郭文钧, 等. 淋巴管内皮细胞在淋巴管生成异常相关疾病中的研究进展. 生理科学进展, 2021, 52(4): 253-258.
|
27. |
Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat Rev Immunol, 2020, 20(9): 566-578.
|
28. |
Park SM, Angel CE, McIntosh JD, et al. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes. PLoS One, 2014, 9(4): e94781.
|
29. |
Kerjaschki D. The lymphatic vasculature revisited. J Clin Invest, 2014, 124(3): 877.
|
30. |
Lucas ED, Tamburini BAJ. Lymph node lymphatic endothelial cell expansion and contraction and the programming of the immune response. Front Immunol, 2019, 10: 36.
|
31. |
Testa U, Pelosi E, Castelli G. Endothelial progenitors in the tumor microenvironment. Adv Exp Med Biol, 2020, 1263: 85-115.
|
32. |
Ran S, Volk-Draper L. Lymphatic endothelial cell progenitors in the tumor microenvironment. Adv Exp Med Biol, 2020, 1234: 87-105.
|
33. |
Al-Rawi MA, Jiang WG. Lymphangiogenesis and cancer metastasis. Front Biosci (Landmark Ed), 2011, 16(2): 723-739.
|
34. |
Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 2002, 296(5574): 1883-1886.
|
35. |
Wong SY, Haack H, Crowley D, et al. Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res, 2005, 65(21): 9789-9798.
|
36. |
Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010, 140(4): 460-476.
|
37. |
Timoshenko AV, Chakraborty C, Wagner GF, et al. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer, 2006, 94(8): 1154-1163.
|
38. |
Hirakawa S, Brown LF, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood, 2007, 109(3): 1010-1017.
|
39. |
Zheng W, Tammela T, Yamamoto M, et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood, 2011, 118(4): 1154-1162.
|
40. |
Fujimoto N, He Y, D'Addio M, et al. Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes. PLoS Biol, 2020, 18(4): e3000704.
|
41. |
Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci U S A, 2012, 109(39): 15894-15899.
|
42. |
Bracher A, Cardona AS, Tauber S, et al. Epidermal growth factor facilitates melanoma lymph node metastasis by influencing tumor lymphangiogenesis. J Invest Dermatol, 2013, 133(1): 230-238.
|
43. |
Karpinich NO, Kechele DO, Espenschied ST, et al. Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J, 2013, 27(2): 590-600.
|
44. |
Kesler CT, Liao S, Munn LL, et al. Lymphatic vessels in health and disease. Wiley Interdiscip Rev Syst Biol Med, 2013, 5(1): 111-124.
|
45. |
Coso S, Bovay E, Petrova TV. Pressing the right buttons: Signaling in lymphangiogenesis. Blood, 2014, 123(17): 2614-2624.
|
46. |
Tamburini BA, Burchill MA, Kedl RM. Antigen capture and archiving by lymphatic endothelial cells following vaccination or viral infection. Nat Commun, 2014, 5: 3989.
|
47. |
Padera TP, Meijer EF, Munn LL. The lymphatic system in disease processes and cancer progression. Annu Rev Biomed Eng, 2016, 18: 125-158.
|
48. |
Wang J, Huang Y, Zhang J, et al. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett, 2018, 418: 176-184.
|
49. |
Rudzińska M, Mikula M, Arczewska KD, et al. Transcription factor prospero homeobox 1 (PROX1) as a potential angiogenic regulator of follicular thyroid cancer dissemination. Int J Mol Sci, 2019, 20(22): 5619.
|
50. |
Rudzińska M, Czarnocka B. The impact of transcription factor prospero homeobox 1 on the regulation of thyroid cancer malignancy. Int J Mol Sci, 2020, 21(9): 3220.
|
51. |
Baluk P, McDonald DM. Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci, 2008, 1131: 1-12.
|
52. |
Wu R, Sarkar J, Tokumaru Y, et al. Intratumoral lymphatic endothelial cell infiltration reflecting lymphangiogenesis is counterbalanced by immune responses and better cancer biology in the breast cancer tumor microenvironment. Ame J Cancer res, 2022, 12: 504-520.
|
53. |
Obulkasim H, Shi X, Wang J, et al. Podoplanin is an important stromal prognostic marker in perihilar cholangiocarcinoma. Oncol Lett, 2018, 15(1): 137-146.
|
54. |
Pan Y, Xia L. Emerging roles of podoplanin in vascular development and homeostasis. Front Med, 2015, 9(4): 421-430.
|
55. |
Chen JM, Luo B, Ma R, et al. Lymphatic endothelial markers and tumor lymphangiogenesis assessment in human breast cancer. Diagnostics (Basel), 2021, 12(1): 4.
|
56. |
Liu P, Zhou J, Zhu H, et al. VEGF-C promotes the development of esophageal cancer via regulating CNTN-1 expression. Cytokine, 2011, 55(1): 8-17.
|
57. |
隋萍. 趋化因子受体CXCR-2在食管癌组织中的表达及与淋巴结转移对指导预后的临床意义. 山东大学, 2014.
|
58. |
郭晶, 卢春来, 古杰, 等. 趋化因子受体7 (CXCR7) 在食管鳞形细胞癌组织中的表达及其临床意义. 复旦学报(医学版), 2013, 40(1): 26-30, 43.
|
59. |
Guo J, Tong CY, Shi JG, et al. C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 7(CXCR7) regulates epithelial-mesenchymal transition process and promotes the metastasis of esophageal cancer by activating signal transducer and activator of transcription 3 (STAT3) pathway. Bioengineered, 2022, 13(3): 7425-7438.
|
60. |
李嘉, 王飞云, 郭石平. CCL20及其受体CCR6在食管鳞癌组织中的表达及意义. 中国药物与临床, 2014, 14(6): 748-749.
|
61. |
Lian J, Liu S, Yue Y, et al. Eomes promotes esophageal carcinoma progression by recruiting Treg cells through the CCL20-CCR6 pathway. Cancer Sci, 2021, 112(1): 144-154.
|
62. |
Xu X, Tang Y, Zhu J, et al. Endoplasmic reticulum stress-related four-biomarker risk classifier for survival evaluation in esophageal cancer. J Oncol, 2022, 2022: 5860671.
|
63. |
宋永明. Ⅰ型胶原蛋白和TGF-β1在食管鳞癌中生物学意义的研究. 山东大学, 2014.
|
64. |
Nakayama H, Ohuchida K, Yonenaga A, et al. S100P regulates the collective invasion of pancreatic cancer cells into the lymphatic endothelial monolayer. Int J Oncol, 2019, 55(1): 211-222.
|
65. |
Kerjaschki D, Bago-Horvath Z, Rudas M, et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest, 2011, 121(5): 2000-2012.
|