1. |
肖小菊, 黎励文. 《心力衰竭的通用定义和分类》解读. 中国胸心血管外科临床杂志, 2021, 28(10): 1140-1144.Xiao XJ, Li LW. Interpretation of the General Definition and Classification of Heart Failure. Chin J Clin Thorac Cardiovasc Surg, 2021, 28(10): 1140-1144.
|
2. |
Zhuang B, Shen T, Li D, et al. A model for the prediction of mortality and hospitalization in Chinese heart failure patients. Front Cardiovasc Med, 2021, 8: 761605.
|
3. |
Gao S, Yin G, Xia Q, et al. Development and validation of a Nomogram to predict the 180-day readmission risk for chronic heart failure: A multicenter prospective study. Front Cardiovasc Med, 2021, 8: 731730.
|
4. |
Shin S, Austin PC, Ross HJ, et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail, 2021, 8(1): 106-115.
|
5. |
Lin Z, Liu X, Xiao L, et al. The MELD-XI score predicts 3-year mortality in patients with chronic heart failure. Front Cardiovasc Med, 2022, 9: 985503.
|
6. |
Mortazavi BJ, Bucholz EM, Desai NR, et al. Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention. JAMA Netw Open, 2019, 2(7): e196835.
|
7. |
Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol, 2019, 110: 12-22.
|
8. |
李杨. 北京地区急性心力衰竭患者远期生存状况、独立危险因素及其预测模型研究. 北京协和医学院, 2021.Li Y. A study on the long-term survival outcomes, independent risk factors, and predictive models for acute heart failure patients in the Beijing region. Peking Union Medical College, 2021.
|
9. |
Cai A, Chen R, Pang C, et al. Machine learning model for predicting 1-year and 3-year all-cause mortality in ischemic heart failure patients. Postgrad Med, 2022, 134(8): 810-819.
|
10. |
Hung WK, Liu HT, Wang CC, et al. One-year mortality risk stratification in patients hospitalized for acute decompensated heart failure: Construction of TSOC-HFrEF risk scoring model. Acta Cardiol Sin, 2020, 36(3): 240-250.
|
11. |
Senni M, Parrella P, De Maria R, et al. Predicting heart failure outcome from cardiac and comorbid conditions: The 3C-HF score. Int J Cardiol, 2013, 163(2): 206-211.
|
12. |
Geersing GJ, Bouwmeester W, Zuithoff P, et al. Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews. PLoS One, 2012, 7(2): e32844.
|
13. |
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
14. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
15. |
陈春梅. 慢性心力衰竭患者1年内死亡的风险评估研究. 吉首大学, 2020.Chen CM. A study on risk assessment of mortality in patients with chronic heart failure within one year. Jishou University, 2020.
|
16. |
孙聪. 基于决策树的慢性心力衰竭患者中西医预后模型研究. 山东中医药大学, 2020.Sun C. A study on prognostic models for chronic heart failure patients based on decision trees: Integrating traditional Chinese medicine and Western medicine. Shandong Univeristy of Traditional Chinese Medicine, 2020.
|
17. |
单少鹏. 基于神经网络与超声心动图的慢性收缩性心力衰竭预后模型研究. 山东大学, 2021.Shan SP. Research on prognostic models for chronic systolic heart failure based on neural networks and echocardiography. Shandong Univeristy,2021.
|
18. |
刘黎霞, 柳森, 谢东君, 等. 慢性心力衰竭预后生物标志物预测模型的建立. 中国临床实用医学, 2021, 12(6): 52-56.Liu LX, Liu S, Xie DJ, et al. Establishment of a prognostic biomarker model for chronic heart failure. China Clin Pract Med, 2021, 12(6): 52-56.
|
19. |
王颖川. 慢性心力衰竭患者90天再入院预测模型的建立. 右江民族医学院, 2021.Wang YC. Development of a predictive model for 90-day readmission in patients with chronic heart failure. Youjiang Medical University for Nationalities, 2021.
|
20. |
Lin M, Zhan J, Luan Y, et al. Development and validation of a risk score in Chinese patients with chronic heart failure. Front Cardiovasc Med, 2022, 9: 865843.
|
21. |
姜利明, 朱永武. 基于动态心电图特征的慢性心力衰竭病人预后预测模型分析. 中西医结合心脑血管病杂志, 2022, 20(2): 281-284.Jiang LM, Zhu YW. Analysis of prognostic prediction models for chronic heart failure patients based on dynamic electrocardiographic features. Chin J Integr Med Cardio Cerebrovasc Dis, 2022, 20: 281-284.
|
22. |
穆合太拜尔·阿瓦克力. 慢性心力衰竭患者31天内非计划性再入院危险因素分析及风险预测模型构建. 新疆医科大学, 2022.Muhtabar A. Analysis of risk factors and construction of a predictive model for unplanned rehospitalization in patients with chronic heart failure within 31 days. Xinjiang Medical University, 2022.
|
23. |
任丽丽, 戴国华, 高武霖, 等. 基于Lasso-Cox回归评价中医药干预在慢性心力衰竭患者预后中的治疗价值. 中华中医药杂志, 2022, 37(10): 6000-6005.Ren LL, Dai GH, Gao WL, et al. Evaluating the therapeutic value of traditional chinese medicine interventions in the prognosis of chronic heart failure patients based on Lasso-Cox regression analysis. China J Tradit Chin Med Pharm, 2022, 37(10): 6000-6005.
|
24. |
Han Q, Ren J, Tian J, et al. A nomogram based on a patient-reported outcomes measure: predicting the risk of readmission for patients with chronic heart failure. Health Qual Life Outcomes, 2020, 18(1): 290.
|
25. |
Sun Q, Jiang S, Wang X, et al. A prediction model for major adverse cardiovascular events in patients with heart failure based on high-throughput echocardiographic data. Front Cardiovasc Med, 2022, 9: 1022658.
|
26. |
Tian J, Yan J, Han G, et al. Machine learning prognosis model based on patient-reported outcomes for chronic heart failure patients after discharge. Health Qual Life Outcomes, 2023, 21(1): 31.
|
27. |
陈章炜, 卢淡泊, 武渊, 等. 多临床因素联合预测心力衰竭患者的远期心力衰竭再住院风险. 上海医学, 2021, 44(5): 327-331.Chen ZW, Lu DB, Wu Y, et al. Multiple clinical factors jointly predict the long-term risk of readmission for heart failure patients. Shanghai Med J, 2021, 44(5): 327-331.
|
28. |
樊佳赛, 杜艺菲, 许佳颖, 等. 基于中医证候和机器学习构建慢性心力衰竭中西医结合预后模型. 基础医学与临床, 2022, 42(8): 1169-1175.Fan JS, Du YF, Xu JY, et al. Developing a prognostic model for chronic heart failure through the integration of traditional Chinese medicine syndromes and machine learning. Basic Clin Med, 2022, 42(8): 1169-1175.
|
29. |
刘静. 基于随机生存森林和Cox比例风险回归的慢性心力衰竭患者再入院风险预测模型构建. 山东大学, 2022.Liu J. Development of a risk prediction model for hospital readmission in chronic heart failure patients based on random survival forests and Cox proportional hazards regression. Shandong University, 2022.
|
30. |
王金琳, 郭文昀, 赵丽. 老年慢性心力衰竭患者6个月内再住院风险的Logistic回归分析. 中国病案, 2023, 24(3): 59-63.Wang JL, Guo WY, Zhao L. Logistic regression analysis of the risk of readmission within 6 months in elderly patients with chronic heart failure. Chin Med Rec, 2023, 24(3): 59-63.
|
31. |
杨弘. 基于极限学习机的Cox模型在慢性心衰患者生存分析中的应用. 山西医科大学, 2020.Yang H. The application of the Cox model based on extreme learning machines in survival analysis of patients with chronic heart failure. Shanxi Medcial University, 2020.
|
32. |
杨弘, 田晶, 孟冰霞, 等. 加权随机森林和代价敏感支持向量机与心衰患者死亡风险评估. 中国卫生统计, 2022, 39(3): 381-384, 388.Yang H, Tian J, Meng BX, et al. Weighted random forest and cost-sensitive support vector machines in evaluating mortality risk in heart failure patients. Chin J Heal Stat, 2022, 39(3): 381-384, 388.
|
33. |
尹海宁, 张文杰. 慢性心力衰竭患者易损期非计划性再入院风险预测模型的构建及验证. 实用心脑肺血管病杂志, 2022, 30(5): 9-14, 19.Yin HN, Zhang WJ. Construction and validation of a risk prediction model for unplanned rehospitalization in patients with chronic heart failure during vulnerable periods. Pract J Cardiac Cereb Pneumal Vasc Dis, 2022, 30(5): 9-14, 19.
|
34. |
张传备, 李方, 翟春晓, 等. 高斯过程模型对慢性心衰患者1年内再入院的风险评估. 山东大学学报(医学版), 2020, 58(6): 28-33.Zhang CB, Li F, Zhai CX, et al. Risk assessment of 1-year readmission for chronic heart failure patients using gaussian process models. J Shandong Univ (Health Sci), 2020, 58(6): 28-33.
|
35. |
张盼盼, 田晶, 杨弘, 等. 基于随机森林的慢性心力衰竭患者报告结局量表的预后评估价值. 郑州大学学报(医学版), 2020, 55(6): 786-790.Zhang PP, Tian J, Yang H, et al. The prognostic value of patient-reported outcome measures in chronic heart failure based on random forest analysis. J Zhengzhou Univ (Med Sci), 2020, 55(6): 786-790.
|
36. |
赵善隽, 陈君, 王大宇. 血红蛋白和血清白蛋白评估老年慢性心力衰竭长期预后的价值. 心脏杂志, 2022, 34(3): 299-303.Zhao SJ, Chen J, Wang DY. The value of assessing hemoglobin and serum albumin in predicting long-term outcomes in elderly patients with chronic heart failure. Chin Heart J, 2022, 34(3): 299-303.
|
37. |
陈茹, 王胜锋, 周家琛, 等. 预测模型研究的偏倚风险和适用性评估工具解读. 中华流行病学杂志, 2020, 41(5): 776-781.Chen R, Wang SF, Zhou JC, et al. Interpretation of bias risks and applicability assessment tools in predictive model research. Chin J Epidemiol, 2020, 41(5): 776-781.
|
38. |
Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: A resampling study. Stat Med, 2016, 35(2): 214-226.
|
39. |
Duran A, De Anda-Duran I, Ventura HO. The era of heart failure risk prediction models, is it time to test their utility? Int J Cardiol, 2022, 352: 98-99.
|
40. |
中国医疗保健国际交流促进会循证医学分会, 海峡两岸医药卫生交流协会老年医学专业委员会. 心力衰竭生物标志物中国专家共识. 中华检验医学杂志, 2020, 43(2): 130-141.The Evidence-Based Medicine Branch of the China Healthcare International Exchange Promotion Association, The Geriatrics Committee of the Cross-Strait Medical and Health Exchange Association. Consensus of Chinese experts on biomarkers for heart failure. Chin J Lab Med, 2020, 43(2): 130-141.
|
41. |
朱易豪, 王飞, 朱涛. 脑钠肽与氨基末端脑钠肽前体临床研究进展. 中国胸心血管外科临床杂志, 2022, 29(12): 1665-1670.Zhu YH, Wang F, Zhu T. Advancements in clinical research on brain natriuretic peptide and amino-terminal pro-BNP. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(12): 1665-1670.
|
42. |
中国医师协会心力衰竭专业委员会, 国家心血管病专家委员会心力衰竭专业委员会, 中华心力衰竭和心肌病杂志编辑委员会. 心力衰竭生物标志物临床应用中国专家共识. 中华心力衰竭和心肌病杂志, 2022, 6(3): 175-192.Heart Failure Group of Cardiovascular Branch of Chinese Medical Association, Heart Failure Professional Committee of Chinese Medical Doctor Association, Editorial Board of Chinese Journal of Heart Failure and Cardiomyopathy. Clinical application of heart failure biomarkers: Consensus of Chinese experts. Chin J Heart Fail Cardiomyop, 2022, 6(3): 175-192.
|
43. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Br J Cancer, 2015, 112(2): 251-259.
|
44. |
Wang S, Zhu X. Predictive modeling of hospital readmission: Challenges and solutions. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(5): 2975-2995.
|
45. |
Wang K, Tian J, Zheng C, et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput Biol Med, 2021, 137: 104813.
|
46. |
Wang CH, Han S, Tong F, et al. Risk prediction model of in-hospital mortality in heart failure with preserved ejection fraction and mid-range ejection fraction: A retrospective cohort study. Biomark Med, 2021, 15(14): 1223-1232.
|
47. |
Sun Z, Dong W, Shi H, et al. Comparing machine learning models and statistical models for predicting heart failure events: A systematic review and meta-analysis. Front Cardiovasc Med, 2022, 9: 812276.
|