1. |
WHO. WHO Coronavirus (COVID-19) Dashboard. URL: https://covid19.who.int/. Accessed on 2023-03-10.
|
2. |
Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of SARS-CoV-2: A target for vaccine development. J Virol, 2020, 94(13): e00647-e00720.
|
3. |
Diao B, Wen K, Zhang J, et al. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clin Microbiol Infect, 2021, 27(2): 289.
|
4. |
Feng WX, Xiang YR, Wu LP, et al. Nucleocapsid protein of SARS-CoV-2 is a potential target for developing new generation of vaccine. J Clin Lab Anal, 2022, 36(6): e24479.
|
5. |
Budd J, Miller BS, Weckman NE, et al. Lateral flow test engineering and lesson learned from COVID-19. Nat Rev Bioeng, 2023, 1: 13-31.
|
6. |
徐英春, 胡继红. 新型冠状病毒抗原快速检测专家共识(2022). 协和医学杂志, 2022, 13(3): 402-411.
|
7. |
Biby A, Wang XC, Liu XL, et al. Rapid testing for coronavirus disease 2019 (COVID-19). MRS Commun, 2022, 12(1): 12-23.
|
8. |
Ang GY, Chan KG, Yean CY, et al. Lateral flow immunoassays for SARS-CoV-2. Diagnostics, 2022, 12(11): 2854.
|
9. |
卓训妮. 侧流免疫层析技术在新冠肺炎诊断中的应用研究进展. 中国口岸科学技术, 2021, 3(8): 42-47.
|
10. |
Lippi G, Henry BM, Plebani M. An overview of the most important preanalytical factors influencing the clinical performance of SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs). Clin Chem Lab Med, 2022, 61(2): 196-204.
|
11. |
Hsieh WY, Lin CH, Lin TC, et al. Development and efficacy of lateral flow point-of-care testing devices for rapid and mass COVID-19 diagnosis by the detections of SARS-CoV-2 antigen and anti-SARS-CoV-2 antibodies. Diagnostics (Basel), 2021, 11(10): 1760.
|
12. |
He J, Zhu SY, Zhou JW, et al. Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay. Front Bioeng Biotechnol, 2023, 10: 1090281.
|
13. |
Khlebtsov BN, Tumskiy RS, Burov AM, et al. Quantifying the numbers of gold nanoparticles in the test zone of lateral flow immunoassay strips. ACS Appl Nano Mater, 2019, 2(8): 5020-5028.
|
14. |
Serebrennikova K, Samsonova J, Osipov A. Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nanomicro Lett, 2018, 10(2): 24.
|
15. |
Zhang L, Huang YJ, Wang JY, et al. Hierarchical flowerlike gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157: H7. Langmuir, 2015, 31(19): 5537-5544.
|
16. |
Panferov VG, Byzova NA, Biketov SF, et al. Comparative study of in situ techniques to enlarge gold nanoparticles for highly sensitive lateral flow immunoassay of SARS-CoV-2. Biosensors (Basel), 2021, 11(7): 229.
|
17. |
Tian ML, Lei LL, Xie MY, et al. Copper deposition-induced efficient signal amplification for ultrasensitive lateral flow immunoassay. Sen Actuators B Chem, 2019, 282(1): 96-103.
|
18. |
Liu YS, Zhang ZY, Yu J, et al. A concentration dependent multicolor conversion strategy for ultrasensitive colorimetric immunoassay with the naked eye. Anal Chim Acta, 2017, 963(22): 129-135.
|
19. |
Liu YS, Xie J, Zhang ZY, et al. An ultrasensitive colorimetric strategy for protein-O-GlcNAcylation detection via copper deposition-enabled nonenzymatic signal amplification. RSC Adv, 2016, 6: 89484-89491.
|
20. |
Peng T, Jiao XSM, Liang ZW, et al. Lateral flow immunoassay coupled with copper enhancement for rapid and sensitive SARS-CoV-2 nucleocapsid protein detection. Biosensors, 2021, 12(1): 13.
|
21. |
Shao YN, Xu WX, Zheng Y, et al. Controlled PAH-mediated method with enhanced optical properties for simple, stable immunochromatographic assays. Biosens Bioelectron, 2022, 206: 114150.
|
22. |
Oh HK, Kim KY, Park JH, et al. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens Bioelectron, 2022, 205: 114094.
|
23. |
Rink S, Baeumner AJ. Progression of paper-based point-of-care testing toward being an indispensable diagnostic tool in future healthcare. Anal Chem, 2023, 95: 1785-1793.
|
24. |
Hristov D, Rijal H, Gomez-Marquez J, et al. Developing a paper-based antigen assay to differentiate between coronaviruses and SARS-CoV-2 spike variants. Anal Chem, 2021, 93(22): 7825-7832.
|
25. |
刘杰, 张丽平, 田安丽, 等. 利用细乳液聚合由溶剂黄43制备纳米乳胶荧光颜料. 精细化工, 2015, 32(9): 1067-1071.
|
26. |
Diao B, Wen K, Chen J, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. MedRxiv preprint, 2020, DOI: 10.1101/2020.03.07.20032524.
|
27. |
Zhang CY, Zhou L, Du Kang, et al. Foundation and clinical evaluation of a new method for detecting SARS-CoV-2 antigen by fluorescent microsphere immunochromatography. Front Cell Infect Microbial, 2020, 10: 553837.
|
28. |
张赛, 王刚, 刘仲明, 等. 基于荧光纳米粒子的新型冠状病毒核衣壳蛋白免疫层析快速检测试剂的研制. 免疫学技术与方法, 2022, 38(11): 1355-1361.
|
29. |
Mao M, Wu F, Shi XY, et al. Ultrasensitive detection of COVID-19 virus N protein based on p-toluenesulfonyl modified fluorescent microsphere immunoassay. Biosensers (Basel), 12(7): 437.
|
30. |
Han H, Wang CW, Yang XS, et al. Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. Sens Actuators B Chem, 2022, 351: 130897.
|
31. |
时磊, 王琛, 宋云龙, 等. 新型冠状病毒侧流免疫层析法研究进展. 标记免疫分析与临床, 2022, 29(5): 893-896.
|
32. |
Seo SE, Ryu ES, Kim JY, et al. Fluorophore-encapsulated nanobeads for on-site, rapid, and sensitive lateral flow assay. Sens Actuators B Chem, 2023, 381: 133364.
|
33. |
Karakus E, Erdemir E, Demirbilek N, et al. Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor. Anal Chim Acta, 2021, 1182: 338939.
|
34. |
Liu D, Wu F, Cen Y, et al. Comparative research on nucleocapsid and spike glycoprotein as the rapid immunodetection targets of COVID-19 and establishment of immunoassay strips. Mol Immunol, 2021, 131: 6-12.
|
35. |
贾小飞, 肖瑞, 王升启. SERS-侧流免疫层析研究进展. 军事医学, 2018, 42(4): 313-316.
|
36. |
Liu ZZ, Wang CW, Zheng S, et al. Simultaneously ultrasensitive and quantitative detection of influenza A virus, SARS-CoV-2, and respiratory cyncytial virus via multichannel magnetic SERS-based lateral flow immunoassay. Nanomedicine, 2023, 47: 102624.
|