1. |
Saremi F, Hassani C, Lin LM, et al. Image predictors of treatment outcome after thoracic aortic dissection repair. Radiographics, 2018, 38(7): 1949-1972.
|
2. |
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. J Am Coll Cardiol, 2020, 76(25): 2982-3021.
|
3. |
Kapil A, Basha A, Yadav S. Double aortic valve sign in aortic dissection. J Emerg Med, 2022, 62(3): 397-398.
|
4. |
Salmasi MY, Al-Saadi N, Hartley P, et al. The risk of misdiagnosis in acute thoracic aortic dissection: A review of current guidelines. Heart, 2020, 106(12): 885-891.
|
5. |
Hemli JM, Pupovac SS, Gleason TG, et al. Management of acute type A aortic dissection in the elderly: An analysis from IRAD. Eur J Cardiothorac Surg, 2022, 61(4): 838-846.
|
6. |
Chakraborty A, Li Y, Zhang C, et al. Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol, 2022, 163: 67-80.
|
7. |
Toldo S, Mezzaroma E, Buckley LF, et al. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther, 2022, 236: 108053.
|
8. |
Sharma M, de Alba E. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. Int J Mol Sci, 2021, 22(2): 872.
|
9. |
Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis, 2020, 11(9): 776.
|
10. |
Ren P, Wu D, Appel R, et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice. J Am Heart Assoc, 2020, 9(7): e014044.
|
11. |
Zuo YB, Zhang YF, Zhang R, et al. Ferroptosis in cancer progression: Role of noncoding RNAs. Int J Biol Sci, 2022, 18(5): 1829-1843.
|
12. |
Ding W, Liu Y, Su Z, et al. Emerging role of non-coding RNAs in aortic dissection. Biomolecules, 2022, 12(10): 1336.
|
13. |
Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in venous thromboembolism. Int J Mol Sci, 2020, 21(7): 2602.
|
14. |
Huang X, Yue Z, Wu J, et al. MicroRNA-21 knockout exacerbates angiotensinⅡ-induced thoracic aortic aneurysm and dissection in mice with abnormal transforming growth factor-β-SMAD3 signaling. Arterioscler Thromb Vasc Biol, 2018, 38(5): 1086-1101.
|
15. |
Wang Y, Dong CQ, Peng GY, et al. MicroRNA-134-5p regulates media degeneration through inhibiting VSMC phenotypic switch and migration in thoracic aortic dissection. Mol Ther Nucleic Acids, 2019, 16: 284-294.
|
16. |
Isselbacher EM, Preventza O, et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol, 2022, 80(24): e223-e393.
|
17. |
Alvandi Z, Bischoff J. Endothelial-mesenchymal transition in cardiovascular disease. Arterioscler Thromb Vasc Biol, 2021, 41(9): 2357-2369.
|
18. |
Taggart M. Vascular function in health and disease review series. J Cell Mol Med, 2010, 14(5): 1017.
|
19. |
Fang Y, Tian S, Pan Y, et al. Pyroptosis: A new frontier in cancer. Biomed Pharmacother, 2020, 121: 109595.
|
20. |
Li S, Sun Y, Song M, et al. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight, 2021, 6(23): e146852.
|
21. |
Cheng Q, Pan J, Zhou ZL, et al. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol Sin, 2021, 42(6): 954-963.
|
22. |
Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A, 2018, 115(46): E10888-E10897.
|
23. |
Jiang M, Qi L, Li L, et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov, 2020, 6: 112.
|
24. |
Sundaram GM, Common JE, Gopal FE, et al. 'See-saw' expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature, 2013, 495(7439): 103-106.
|
25. |
Shi L, Kan J, Zhuo L, et al. Bioinformatics identification of miR-514b-5p promotes NSCLC progression and induces PI3K/AKT and p38 pathways by targeting small glutamine-rich tetratricopeptide repeat-containing protein beta. FEBS J, 2023, 290(4): 1134-1150.
|
26. |
Soliman HAN, Toso EA, Darwish IE, et al. Antiapoptotic Protein FAIM2 is targeted by miR-3202, and DUX4 via TRIM21, leading to cell death and defective myogenesis. Cell Death Dis, 2022, 13(4): 405.
|
27. |
Gao Q, Ye Z, Liu T, et al. Hsa-miR-3202 attenuates Jurkat cell infiltration via MMP2 in primary Sjögren's syndrome. J Oral Pathol Med, 2022, 51(9): 818-828.
|
28. |
Shen W, Liu J, Fan M, et al. MiR-3202 protects smokers from chronic obstructive pulmonary disease through inhibiting FAIM2: An in vivo and in vitro study. Exp Cell Res, 2018, 362(2): 370-377.
|