- 1. Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China;
- 2. Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China;
- 3. Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China;
- 4. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200031, P. R. China;
With the widespread application of high-resolution and low-dose computed tomography (CT), especially the increasing number of people participating in lung cancer screening projects or health examinations, the detection of pulmonary nodules is increasing. At present, the relevant guidelines for pulmonary nodules focus on how to follow up and diagnose, but the treatment is vague. And the guidelines of European and American countries are not suitable for East Asia. In order to standardize the diagnosis and treatment of pulmonary nodules and address the issue of disconnection between existing guidelines and clinical practice, the Lung Cancer Medical Education Committee of the Chinese Medicine Education Association has organized domestic multidisciplinary experts, based on literature published by experts from East Asia, and referring to international guidelines or consensus, the "Chinese expert consensus on multidisciplinary minimally invasive diagnosis and treatment of pulmonary nodules" has been formed through repeated consultations and thorough discussions. The main content includes epidemiology, natural course, malignancy probability, follow-up strategies, imaging diagnosis, pathological biopsy, surgical resection, thermal ablation, and postoperative management of pulmonary nodules.
Citation: LIU Baodong, CHEN Haiquan, LIU Lunxu, JIANG Gening, ZHI Xiuyi, Representatives of Writting Group of the "Chinese Expert Consensus on Multidisciplinary Minimally Invasive Diagnosis and Treatment of Pulmonary Nodules" by the Lung Cancer Medical Education Committee of the Chinese Medicine Education Association. Chinese expert consensus on multidisciplinary minimally invasive diagnosis and treatment of pulmonary nodules. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2023, 30(8): 1061-1074. doi: 10.7507/1007-4848.202306006 Copy
1. | MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology, 2017, 284(1): 228-243. |
2. | NCCN clinical practice guidelines in oncology: Lung cancer screening (version 1.2023). Available at www.nccn.org/patients. |
3. | Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol, 2015, 10(9): 1243-1260. |
4. | National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409. |
5. | Horeweg N, van der Aalst CM, Vliegenthart R, et al. Volumetric computed tomography screening for lung cancer: Three rounds of the NELSON trial. Eur Respir J, 2013, 42(6): 1659-1667. |
6. | Li N, Tan F, Chen W, et al. One-off low-dose CT for lung cancer screening in China: A multicentre, population-based, prospective cohort study. Lancet Respir Med, 2022, 10(4): 378-391. |
7. | Detterbeck FC, Mazzone PJ, Naidich DP, et al. Screening for lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e78S-e92S. |
8. | Henschke CI, Yankelevitz DF, Mirtcheva R, et al. CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol, 2002, 178(5): 1053-1057. |
9. | Suzuki K, Kusumoto M, Watanabe S, et al. Radiologic classification of small adenocarcinoma of the lung: Radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg, 2006, 81(2): 413-419. |
10. | van Riel SJ, Sánchez CI, Bankier AA, et al. Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management. Radiology, 2015, 277(3): 863-871. |
11. | Nair A, Bartlett EC, Walsh SLF, et al. Variable radiological lung nodule evaluation leads to divergent management recommendations. Eur Respir J, 2018, 52(6): 1801359. |
12. | Yankelevitz DF, Yip R, Smith JP, et al. CT screening for lung cancer: Nonsolid nodules in baseline and annual repeat rounds. Radiology, 2015, 277(2): 555-564. |
13. | Kim YW, Kwon BS, Lim SY, et al. Lung cancer probability and clinical outcomes of baseline and new subsolid nodules detected on low-dose CT screening. Thorax, 2021, 76(10): 980-988. |
14. | Detterbeck FC, Homer RJ. Approach to the ground-glass nodule. Clin Chest Med, 2011, 32(4): 799-810. |
15. | Aoki T. Growth of pure ground-glass lung nodule detected at computed tomography. J Thorac Dis, 2015, 7(9): E326-E328. |
16. | Kobayashi Y, Mitsudomi T. Management of ground-glass opacities: Should all pulmonary lesions with ground-glass opacity be surgically resected? Transl Lung Cancer Res, 2013, 2(5): 354-363. |
17. | Kakinuma R, Muramatsu Y, Kusumoto M, et al. Solitary pure ground-glass nodules 5 mm or smaller: Frequency of growth. Radiology, 2015, 276(3): 873-882. |
18. | Lee HW, Jin KN, Lee JK, et al. Long-term follow-up of ground-glass nodules after 5 years of stability. J Thorac Oncol, 2019, 14(8): 1370-1377. |
19. | Tang EK, Chen CS, Wu CC, et al. Natural history of persistent pulmonary subsolid nodules: Long-term observation of different interval growth. Heart Lung Circ, 2019, 28(11): 1747-1754. |
20. | Kakinuma R, Noguchi M, Ashizawa K, et al. Natural history of pulmonary subsolid nodules: A prospective multicenter study. J Thorac Oncol, 2016, 11(7): 1012-1028. |
21. | Wahidi MM, Govert JA, Goudar RK, et al. Evidence for the treatment of patients with pulmonary nodules: When is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest, 2007, 132(3 Suppl): 94S-107S. |
22. | Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: When is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e93S-e120S. |
23. | Lee GD, Park CH, Park HS, et al. Lung adenocarcinoma invasiveness risk in pure ground-glass opacity lung nodules smaller than 2 cm. Thorac Cardiovasc Surg, 2019, 67(4): 321-328. |
24. | Mets OM, de Jong PA, Scholten ET, et al. Subsolid pulmonary nodule morphology and associated patient characteristics in a routine clinical population. Eur Radiol, 2017, 27(2): 689-696. |
25. | Xiang W, Xing Y, Jiang S, et al. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring ≤10 mm on thin-section computed tomography. Cancer Imaging, 2014, 14(1): 33. |
26. | Silva M, Sverzellati N, Manna C, et al. Long-term surveillance of ground-glass nodules: Evidence from the MILD trial. J Thorac Oncol, 2012, 7(10): 1541-1546. |
27. | Zhang Y, Qiang JW, Ye JD, et al. High resolution CT in differentiating minimally invasive component in early lung adenocarcinoma. Lung Cancer, 2014, 84(3): 236-241. |
28. | Liang J, Xu XQ, Xu H, et al. Using the CT features to differentiate invasive pulmonary adenocarcinoma from pre-invasive lesion appearing as pure or mixed ground-glass nodules. Br J Radiol, 2015, 88(1053): 20140811. |
29. | Gao F, Sun Y, Zhang G, et al. CT characterization of different pathological types of subcentimeter pulmonary ground-glass nodular lesions. Br J Radiol, 2019, 92(1094): 20180204. |
30. | Nambu A, Araki T, Taguchi Y, et al. Focal area of ground-glass opacity and ground-glass opacity predominance on thin-section CT: Discrimination between neoplastic and non-neoplastic lesions. Clin Radiol, 2005, 60(9): 1006-1017. |
31. | Wu F, Tian SP, Jin X, et al. CT and histopathologic characteristics of lung adenocarcinoma with pure ground-glass nodules 10 mm or less in diameter. Eur Radiol, 2017, 27(10): 4037-4043. |
32. | Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical ⅠA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol, 2011, 6(4): 751-756. |
33. | Asamura H, Hishida T, Suzuki K, et al. Radiographically determined noninvasive adenocarcinoma of the lung: Survival outcomes of Japan Clinical Oncology Group 0201. J Thorac Cardiovasc Surg, 2013, 146(1): 24-30. |
34. | Khokhar S, Mironov S, Seshan VE, et al. Antibiotic use in the management of pulmonary nodules. Chest, 2010, 137(2): 369-375. |
35. | Cho H, Lee HY, Kim J, et al. Pure ground glass nodular adenocarcinomas: Are preoperative positron emission tomography/computed tomography and brain magnetic resonance imaging useful or necessary? J Thorac Cardiovasc Surg, 2015, 150(3): 514-520. |
36. | Li H, Ye T, Li N, et al. Is 99m Tc bone scintigraphy necessary in the preoperative workup for patients with cT1N0 subsolid lung cancer? A prospective multicenter cohort study. Thorac Cancer, 2021, 12(4): 415-419. |
37. | Ye T, Chen Z, Ma D, et al. Is flexible bronchoscopy necessary in the preoperative workup of patients with peripheral cT1N0 subsolid lung cancer?—A prospective multi-center cohort study. Transl Lung Cancer Res, 2021, 10(4): 1635-1641. |
38. | Kim H, Goo JM, Kim YT, et al. Validation of the eighth edition clinical T categorization system for clinical stage ⅠA, resected lung adenocarcinomas: Prognostic implications of the ground-glass opacity component. J Thorac Oncol, 2020, 15(4): 580-588. |
39. | Travis WD, Asamura H, Bankier AA, et al. The IASLC lung cancer staging project: Proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol, 2016, 11(8): 1204-1223. |
40. | Hattori A, Suzuki K, Takamochi K, et al. Prognostic impact of a ground-glass opacity component in clinical stage ⅠA non-small cell lung cancer. J Thorac Cardiovasc Surg, 2021, 161(4): 1469-1480. |
41. | Fu F, Zhang Y, Wen Z, et al. Distinct prognostic factors in patients with stage Ⅰ non-small cell lung cancer with radiologic part-solid or solid lesions. J Thorac Oncol, 2019, 14(12): 2133-2142. |
42. | Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e142S-e165S. |
43. | Yang JS, Liu YM, Mao YM, et al. Meta-analysis of CT-guided transthoracic needle biopsy for the evaluation of the ground-glass opacity pulmonary lesions. Br J Radiol, 2014, 87(1042): 20140276. |
44. | Lee KH, Lim KY, Suh YJ, et al. Nondiagnostic percutaneous transthoracic needle biopsy of lung lesions: A multicenter study of malignancy risk. Radiology, 2019, 290(3): 814-823. |
45. | Lee KH, Lim KY, Suh YJ, et al. Diagnostic accuracy of percutaneous transthoracic needle lung biopsies: A multicenter study. Korean J Radiol, 2019, 20(8): 1300-1310. |
46. | Wu CC, Maher MM, Shepard JA. Complications of CT-guided percutaneous needle biopsy of the chest: Prevention and management. AJR Am J Roentgenol, 2011, 196(6): W678-W682. |
47. | Tomiyama N, Yasuhara Y, Nakajima Y, et al. CT-guided needle biopsy of lung lesions: A survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol, 2006, 59(1): 60-64. |
48. | Wiener RS, Schwartz LM, Woloshin S, et al. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: An analysis of discharge records. Ann Intern Med, 2011, 155(3): 137-144. |
49. | Yoon SH, Park CM, Lee KH, et al. Analysis of complications of percutaneous transthoracic needle biopsy using CT-guidance modalities in a multicenter cohort of 10568 biopsies. Korean J Radiol, 2019, 20(2): 323-331. |
50. | Huang MD, Weng HH, Hsu SL, et al. Accuracy and complications of CT-guided pulmonary core biopsy in small nodules: A single-center experience. Cancer Imaging, 2019, 19(1): 51. |
51. | Wang J, Ni Y, Yang X, et al. Diagnostic ability of percutaneous core biopsy immediately after microwave ablation for lung ground-glass opacity. J Cancer Res Ther, 2019, 15(4): 755-759. |
52. | Hasegawa T, Kondo C, Sato Y, et al. Pathologic diagnosis and genetic analysis of a lung tumor needle biopsy specimen obtained immediately after radiofrequency ablation. Cardiovasc Intervent Radiol, 2018, 41(4): 594-602. |
53. | Chi J, Ding M, Wang Z, et al. Pathologic diagnosis and genetic analysis of sequential biopsy following coaxial low-power microwave thermal coagulation for pulmonary ground-glass opacity nodules. Cardiovasc Intervent Radiol, 2021, 44(8): 1204-1213. |
54. | Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: One-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol, 2019, 14(3): 445-458. |
55. | Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest, 2004, 126(3): 959-965. |
56. | Bhatt KM, Tandon YK, Graham R, et al. Electromagnetic navigational bronchoscopy versus CT-guided percutaneous sampling of peripheral indeterminate pulmonary nodules: A cohort study. Radiology, 2018, 286(3): 1052-1061. |
57. | Wook Kim Y, Kim HJ, Hyun Yoon S, et al. Comparison of electromagnetic navigation bronchoscopy and transthoracic needle biopsy for diagnosing bronchus sign-positive pulmonary lesions. Lung Cancer, 2023, 181: 107234. |
58. | Zhan P, Zhu QQ, Miu YY, et al. Comparison between endobronchial ultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: A systematic review and meta-analysis. Transl Lung Cancer Res, 2017, 6(1): 23-34. |
59. | Han Y, Kim HJ, Kong KA, et al. Diagnosis of small pulmonary lesions by transbronchial lung biopsy with radial endobronchial ultrasound and virtual bronchoscopic navigation versus CT-guided transthoracic needle biopsy: A systematic review and meta-analysis. PLoS One, 2018, 13(1): e0191590. |
60. | Yu Lee-Mateus A, Reisenauer J, Garcia-Saucedo JC, et al. Robotic-assisted bronchoscopy versus CT-guided transthoracic biopsy for diagnosis of pulmonary nodules. Respirology, 2023, 28(1): 66-73. |
61. | 刘宝东, 顾春东. 肺部小结节术前辅助定位技术专家共识 (2019版). 中国胸心血管外科临床杂志, 2019, 26(2): 109-113. |
62. | Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg, 1995, 60(3): 615-622. |
63. | Suzuki K, Watanabe SI, Wakabayashi M, et al. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J Thorac Cardiovasc Surg, 2022, 163(1): 289-301. |
64. | Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet, 2022, 399(10335): 1607-1617. |
65. | Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stage ⅠA non-small-cell lung cancer. N Engl J Med, 2023, 388(6): 489-498. |
66. | Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): A multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med, 2023, 11(6): 540-549. |
67. | Rami-Porta R, Wittekind C, Goldstraw P, et al. Complete resection in lung cancer surgery: Proposed definition. Lung Cancer, 2005, 49(1): 25-33. |
68. | Zhang Y, Deng C, Zheng Q, et al. Selective mediastinal lymph node dissection strategy for clinical T1N0 invasive lung cancer: A prospective, multicenter, clinical trial. J Thorac Oncol, 2023, 18(7): 931-939. |
69. | Genshaft SJ, Suh RD, Abtin F, et al. Society of Interventional Radiology Quality improvement standards on percutaneous ablation of non-small cell lung cancer and metastatic disease to the lungs. J Vasc Interv Radiol, 2021, 32(8): 1242. e1-1242. e10. |
70. | Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: A prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol, 2008, 9(7): 621-628. |
71. | Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer, 2015, 121(19): 3491-3498. |
72. | Gobara H, Arai Y, Kobayashi T, et al. Percutaneous radiofrequency ablation for patients with malignant lung tumors: A phase Ⅱ prospective multicenter study (JIVROSG-0702). Jpn J Radiol, 2016, 34(8): 556-563. |
73. | Palussière J, Chomy F, Savina M, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in patients ineligible for surgery: Results of a prospective multicenter phase Ⅱ trial. J Cardiothorac Surg, 2018, 13(1): 91. |
74. | Li G, Xue M, Chen W, et al. Efficacy and safety of radiofrequency ablation for lung cancers: A systematic review and meta-analysis. Eur J Radiol, 2018, 100: 92-98. |
75. | Hu H, Zhai B, Liu R, et al. Microwave ablation versus wedge resection for stage Ⅰnon-small cell lung cancer adjacent to the pericardium: Propensity score analyses of long-term outcomes. Cardiovasc Intervent Radiol, 2021, 44(2): 237-246. |
76. | Ni Y, Huang G, Yang X, et al. Microwave ablation treatment for medically inoperable stage Ⅰ non-small cell lung cancers: Long-term results. Eur Radiol, 2022, 32(8): 5616-5622. |
77. | Han X, Wei Z, Zhao Z, et al. Cost and effectiveness of microwave ablation versus video-assisted thoracoscopic surgical resection for ground-glass nodule lung adenocarcinoma. Front Oncol, 2022, 12: 962630. |
78. | Sun YD, Zhang H, Liu JZ, et al. Efficacy of radiofrequency ablation and microwave ablation in the treatment of thoracic cancer: A systematic review and meta-analysis. Thorac Cancer, 2019, 10(3): 543-550. |
79. | Yuan Z, Wang Y, Zhang J, et al. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol, 2019, 16(3): 302-314. |
80. | Macchi M, Belfiore MP, Floridi C, et al. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol, 2017, 34(5): 96. |
81. | Jiang B, Mcclure MA, Chen T, et al. Efficacy and safety of thermal ablation of lung malignancies: A Network meta-analysis. Ann Thorac Med, 2018, 13(4): 243-250. |
82. | Kodama H, Yamakado K, Hasegawa T, et al. Radiofrequency ablation for ground-glass opacity-dominant lung adenocarcinoma. J Vasc Interv Radiol, 2014, 25(3): 333-339. |
83. | Iguchi T, Hiraki T, Gobara H, et al. Percutaneous radiofrequency ablation of lung cancer presenting as ground-glass opacity. Cardiovasc Intervent Radiol, 2015, 38(2): 409-415. |
84. | Liu S, Liang B, Li Y, et al. CT-guided percutaneous cryoablation in patients with lung nodules mainly composed of ground-glass opacities. J Vasc Interv Radiol, 2022, 33(8): 942-948. |
85. | Yang X, Ye X, Lin Z, et al. Computed tomography-guided percutaneous microwave ablation for treatment of peripheral ground-glass opacity-Lung adenocarcinoma: A pilot study. J Cancer Res Ther, 2018, 14(4): 764-771. |
86. | 谭晓刚, 刘宝东. 射频消融治疗肺磨玻璃结节的临床价值. 中国肺癌杂志, 2021, 24(10): 677-682. |
87. | Santos RS, Gupta A, Ebright MI, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg, 2010, 89(1): 265-268. |
88. | Koizumi T, Tsushima K, Tanabe T, et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration, 2015, 90(1): 47-55. |
89. | Xie F, Zheng X, Xiao B, et al. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration, 2017, 94(3): 293-298. |
90. | 叶欣, 王俊, 危志刚, 等. 热消融治疗肺部亚实性结节专家共识 (2021年版). 中国肺癌杂志, 2021, 24(5): 305-322. |
91. | 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南 (2021版). 中华医学杂志, 2021, 101(23): 1725-1757. |
92. | Wu YL, Tsuboi M, He J, et al. Osimertinib in Resected EGFR-mutated non-small-cell lung cancer. N Engl J Med, 2020, 383(18): 1711-1723. |
93. | Herbst RS, Wu YL, John T, et al. Adjuvant osimertinib for resected EGFR-mutated stageⅠB-ⅢA non-small-cell lung cancer: Updated results from the phase Ⅲ randomized ADAURA trial. J Clin Oncol, 2023, 41(10): 1830-1840. |
94. | Ou W, Li N, Wang BX, et al. Adjuvant icotinib versus observation in patients with completely resected EGFR-mutated stageⅠB NSCLC (GASTO1003, CORIN): A randomised, open-label, phase 2 trial. EClinicalMedicine, 2023, 57: 101839. |
95. | Westeel V, Foucher P, Scherpereel A, et al. Chest CT scan plus X-ray versus chest X-ray for the follow-up of completely resected non-small-cell lung cancer (IFCT-0302): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol, 2022, 23(9): 1180-1188. |
96. | Heiden BT, Eaton DB, Chang SH, et al. Association between imaging surveillance frequency and outcomes following surgical treatment of early-stage lung cancer. J Natl Cancer Inst, 2023, 115(3): 303-310. |
97. | Xia L, Mei J, Kang R, et al. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: A prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res, 2022, 28(15): 3308-3317. |
98. | 刘宝东, 支修益. 影像引导下热消融治疗肺部肿瘤的局部疗效评价. 中国医学前沿杂志 (电子版), 2015, 7(2): 11-14. |
99. | Ye X, Fan W, Wang Z, et al. Expert consensus on thermal ablation therapy of pulmonary subsolid nodules (2021 Edition). J Cancer Res Ther, 2021, 17(5): 1141-1156. |
100. | Kim HK, Choi YS, Kim J, et al. Management of multiple pure ground-glass opacity lesions in patients with bronchioloalveolar carcinoma. J Thorac Oncol, 2010, 5(2): 206-210. |
101. | Shimada Y, Saji H, Otani K, et al. Survival of a surgical series of lung cancer patients with synchronous multiple ground-glass opacities, and the management of their residual lesions. Lung Cancer, 2015, 88(2): 174-180. |
102. | Hattori A, Matsunaga T, Takamochi K, et al. Surgical management of multifocal ground-glass opacities of the lung: Correlation of clinicopathologic and radiologic findings. Thorac Cardiovasc Surg, 2017, 65(2): 142-149. |
103. | Gao RW, Berry MF, Kunder CA, et al. Survival and risk factors for progression after resection of the dominant tumor in multifocal, lepidic-type pulmonary adenocarcinoma. J Thorac Cardiovasc Surg, 2017, 154(6): 2092-2099. |
- 1. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology, 2017, 284(1): 228-243.
- 2. NCCN clinical practice guidelines in oncology: Lung cancer screening (version 1.2023). Available at www.nccn.org/patients.
- 3. Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol, 2015, 10(9): 1243-1260.
- 4. National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
- 5. Horeweg N, van der Aalst CM, Vliegenthart R, et al. Volumetric computed tomography screening for lung cancer: Three rounds of the NELSON trial. Eur Respir J, 2013, 42(6): 1659-1667.
- 6. Li N, Tan F, Chen W, et al. One-off low-dose CT for lung cancer screening in China: A multicentre, population-based, prospective cohort study. Lancet Respir Med, 2022, 10(4): 378-391.
- 7. Detterbeck FC, Mazzone PJ, Naidich DP, et al. Screening for lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e78S-e92S.
- 8. Henschke CI, Yankelevitz DF, Mirtcheva R, et al. CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol, 2002, 178(5): 1053-1057.
- 9. Suzuki K, Kusumoto M, Watanabe S, et al. Radiologic classification of small adenocarcinoma of the lung: Radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg, 2006, 81(2): 413-419.
- 10. van Riel SJ, Sánchez CI, Bankier AA, et al. Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management. Radiology, 2015, 277(3): 863-871.
- 11. Nair A, Bartlett EC, Walsh SLF, et al. Variable radiological lung nodule evaluation leads to divergent management recommendations. Eur Respir J, 2018, 52(6): 1801359.
- 12. Yankelevitz DF, Yip R, Smith JP, et al. CT screening for lung cancer: Nonsolid nodules in baseline and annual repeat rounds. Radiology, 2015, 277(2): 555-564.
- 13. Kim YW, Kwon BS, Lim SY, et al. Lung cancer probability and clinical outcomes of baseline and new subsolid nodules detected on low-dose CT screening. Thorax, 2021, 76(10): 980-988.
- 14. Detterbeck FC, Homer RJ. Approach to the ground-glass nodule. Clin Chest Med, 2011, 32(4): 799-810.
- 15. Aoki T. Growth of pure ground-glass lung nodule detected at computed tomography. J Thorac Dis, 2015, 7(9): E326-E328.
- 16. Kobayashi Y, Mitsudomi T. Management of ground-glass opacities: Should all pulmonary lesions with ground-glass opacity be surgically resected? Transl Lung Cancer Res, 2013, 2(5): 354-363.
- 17. Kakinuma R, Muramatsu Y, Kusumoto M, et al. Solitary pure ground-glass nodules 5 mm or smaller: Frequency of growth. Radiology, 2015, 276(3): 873-882.
- 18. Lee HW, Jin KN, Lee JK, et al. Long-term follow-up of ground-glass nodules after 5 years of stability. J Thorac Oncol, 2019, 14(8): 1370-1377.
- 19. Tang EK, Chen CS, Wu CC, et al. Natural history of persistent pulmonary subsolid nodules: Long-term observation of different interval growth. Heart Lung Circ, 2019, 28(11): 1747-1754.
- 20. Kakinuma R, Noguchi M, Ashizawa K, et al. Natural history of pulmonary subsolid nodules: A prospective multicenter study. J Thorac Oncol, 2016, 11(7): 1012-1028.
- 21. Wahidi MM, Govert JA, Goudar RK, et al. Evidence for the treatment of patients with pulmonary nodules: When is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest, 2007, 132(3 Suppl): 94S-107S.
- 22. Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: When is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e93S-e120S.
- 23. Lee GD, Park CH, Park HS, et al. Lung adenocarcinoma invasiveness risk in pure ground-glass opacity lung nodules smaller than 2 cm. Thorac Cardiovasc Surg, 2019, 67(4): 321-328.
- 24. Mets OM, de Jong PA, Scholten ET, et al. Subsolid pulmonary nodule morphology and associated patient characteristics in a routine clinical population. Eur Radiol, 2017, 27(2): 689-696.
- 25. Xiang W, Xing Y, Jiang S, et al. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring ≤10 mm on thin-section computed tomography. Cancer Imaging, 2014, 14(1): 33.
- 26. Silva M, Sverzellati N, Manna C, et al. Long-term surveillance of ground-glass nodules: Evidence from the MILD trial. J Thorac Oncol, 2012, 7(10): 1541-1546.
- 27. Zhang Y, Qiang JW, Ye JD, et al. High resolution CT in differentiating minimally invasive component in early lung adenocarcinoma. Lung Cancer, 2014, 84(3): 236-241.
- 28. Liang J, Xu XQ, Xu H, et al. Using the CT features to differentiate invasive pulmonary adenocarcinoma from pre-invasive lesion appearing as pure or mixed ground-glass nodules. Br J Radiol, 2015, 88(1053): 20140811.
- 29. Gao F, Sun Y, Zhang G, et al. CT characterization of different pathological types of subcentimeter pulmonary ground-glass nodular lesions. Br J Radiol, 2019, 92(1094): 20180204.
- 30. Nambu A, Araki T, Taguchi Y, et al. Focal area of ground-glass opacity and ground-glass opacity predominance on thin-section CT: Discrimination between neoplastic and non-neoplastic lesions. Clin Radiol, 2005, 60(9): 1006-1017.
- 31. Wu F, Tian SP, Jin X, et al. CT and histopathologic characteristics of lung adenocarcinoma with pure ground-glass nodules 10 mm or less in diameter. Eur Radiol, 2017, 27(10): 4037-4043.
- 32. Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical ⅠA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol, 2011, 6(4): 751-756.
- 33. Asamura H, Hishida T, Suzuki K, et al. Radiographically determined noninvasive adenocarcinoma of the lung: Survival outcomes of Japan Clinical Oncology Group 0201. J Thorac Cardiovasc Surg, 2013, 146(1): 24-30.
- 34. Khokhar S, Mironov S, Seshan VE, et al. Antibiotic use in the management of pulmonary nodules. Chest, 2010, 137(2): 369-375.
- 35. Cho H, Lee HY, Kim J, et al. Pure ground glass nodular adenocarcinomas: Are preoperative positron emission tomography/computed tomography and brain magnetic resonance imaging useful or necessary? J Thorac Cardiovasc Surg, 2015, 150(3): 514-520.
- 36. Li H, Ye T, Li N, et al. Is 99m Tc bone scintigraphy necessary in the preoperative workup for patients with cT1N0 subsolid lung cancer? A prospective multicenter cohort study. Thorac Cancer, 2021, 12(4): 415-419.
- 37. Ye T, Chen Z, Ma D, et al. Is flexible bronchoscopy necessary in the preoperative workup of patients with peripheral cT1N0 subsolid lung cancer?—A prospective multi-center cohort study. Transl Lung Cancer Res, 2021, 10(4): 1635-1641.
- 38. Kim H, Goo JM, Kim YT, et al. Validation of the eighth edition clinical T categorization system for clinical stage ⅠA, resected lung adenocarcinomas: Prognostic implications of the ground-glass opacity component. J Thorac Oncol, 2020, 15(4): 580-588.
- 39. Travis WD, Asamura H, Bankier AA, et al. The IASLC lung cancer staging project: Proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol, 2016, 11(8): 1204-1223.
- 40. Hattori A, Suzuki K, Takamochi K, et al. Prognostic impact of a ground-glass opacity component in clinical stage ⅠA non-small cell lung cancer. J Thorac Cardiovasc Surg, 2021, 161(4): 1469-1480.
- 41. Fu F, Zhang Y, Wen Z, et al. Distinct prognostic factors in patients with stage Ⅰ non-small cell lung cancer with radiologic part-solid or solid lesions. J Thorac Oncol, 2019, 14(12): 2133-2142.
- 42. Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e142S-e165S.
- 43. Yang JS, Liu YM, Mao YM, et al. Meta-analysis of CT-guided transthoracic needle biopsy for the evaluation of the ground-glass opacity pulmonary lesions. Br J Radiol, 2014, 87(1042): 20140276.
- 44. Lee KH, Lim KY, Suh YJ, et al. Nondiagnostic percutaneous transthoracic needle biopsy of lung lesions: A multicenter study of malignancy risk. Radiology, 2019, 290(3): 814-823.
- 45. Lee KH, Lim KY, Suh YJ, et al. Diagnostic accuracy of percutaneous transthoracic needle lung biopsies: A multicenter study. Korean J Radiol, 2019, 20(8): 1300-1310.
- 46. Wu CC, Maher MM, Shepard JA. Complications of CT-guided percutaneous needle biopsy of the chest: Prevention and management. AJR Am J Roentgenol, 2011, 196(6): W678-W682.
- 47. Tomiyama N, Yasuhara Y, Nakajima Y, et al. CT-guided needle biopsy of lung lesions: A survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol, 2006, 59(1): 60-64.
- 48. Wiener RS, Schwartz LM, Woloshin S, et al. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: An analysis of discharge records. Ann Intern Med, 2011, 155(3): 137-144.
- 49. Yoon SH, Park CM, Lee KH, et al. Analysis of complications of percutaneous transthoracic needle biopsy using CT-guidance modalities in a multicenter cohort of 10568 biopsies. Korean J Radiol, 2019, 20(2): 323-331.
- 50. Huang MD, Weng HH, Hsu SL, et al. Accuracy and complications of CT-guided pulmonary core biopsy in small nodules: A single-center experience. Cancer Imaging, 2019, 19(1): 51.
- 51. Wang J, Ni Y, Yang X, et al. Diagnostic ability of percutaneous core biopsy immediately after microwave ablation for lung ground-glass opacity. J Cancer Res Ther, 2019, 15(4): 755-759.
- 52. Hasegawa T, Kondo C, Sato Y, et al. Pathologic diagnosis and genetic analysis of a lung tumor needle biopsy specimen obtained immediately after radiofrequency ablation. Cardiovasc Intervent Radiol, 2018, 41(4): 594-602.
- 53. Chi J, Ding M, Wang Z, et al. Pathologic diagnosis and genetic analysis of sequential biopsy following coaxial low-power microwave thermal coagulation for pulmonary ground-glass opacity nodules. Cardiovasc Intervent Radiol, 2021, 44(8): 1204-1213.
- 54. Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: One-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol, 2019, 14(3): 445-458.
- 55. Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest, 2004, 126(3): 959-965.
- 56. Bhatt KM, Tandon YK, Graham R, et al. Electromagnetic navigational bronchoscopy versus CT-guided percutaneous sampling of peripheral indeterminate pulmonary nodules: A cohort study. Radiology, 2018, 286(3): 1052-1061.
- 57. Wook Kim Y, Kim HJ, Hyun Yoon S, et al. Comparison of electromagnetic navigation bronchoscopy and transthoracic needle biopsy for diagnosing bronchus sign-positive pulmonary lesions. Lung Cancer, 2023, 181: 107234.
- 58. Zhan P, Zhu QQ, Miu YY, et al. Comparison between endobronchial ultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: A systematic review and meta-analysis. Transl Lung Cancer Res, 2017, 6(1): 23-34.
- 59. Han Y, Kim HJ, Kong KA, et al. Diagnosis of small pulmonary lesions by transbronchial lung biopsy with radial endobronchial ultrasound and virtual bronchoscopic navigation versus CT-guided transthoracic needle biopsy: A systematic review and meta-analysis. PLoS One, 2018, 13(1): e0191590.
- 60. Yu Lee-Mateus A, Reisenauer J, Garcia-Saucedo JC, et al. Robotic-assisted bronchoscopy versus CT-guided transthoracic biopsy for diagnosis of pulmonary nodules. Respirology, 2023, 28(1): 66-73.
- 61. 刘宝东, 顾春东. 肺部小结节术前辅助定位技术专家共识 (2019版). 中国胸心血管外科临床杂志, 2019, 26(2): 109-113.
- 62. Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg, 1995, 60(3): 615-622.
- 63. Suzuki K, Watanabe SI, Wakabayashi M, et al. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J Thorac Cardiovasc Surg, 2022, 163(1): 289-301.
- 64. Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet, 2022, 399(10335): 1607-1617.
- 65. Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stage ⅠA non-small-cell lung cancer. N Engl J Med, 2023, 388(6): 489-498.
- 66. Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): A multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med, 2023, 11(6): 540-549.
- 67. Rami-Porta R, Wittekind C, Goldstraw P, et al. Complete resection in lung cancer surgery: Proposed definition. Lung Cancer, 2005, 49(1): 25-33.
- 68. Zhang Y, Deng C, Zheng Q, et al. Selective mediastinal lymph node dissection strategy for clinical T1N0 invasive lung cancer: A prospective, multicenter, clinical trial. J Thorac Oncol, 2023, 18(7): 931-939.
- 69. Genshaft SJ, Suh RD, Abtin F, et al. Society of Interventional Radiology Quality improvement standards on percutaneous ablation of non-small cell lung cancer and metastatic disease to the lungs. J Vasc Interv Radiol, 2021, 32(8): 1242. e1-1242. e10.
- 70. Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: A prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol, 2008, 9(7): 621-628.
- 71. Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer, 2015, 121(19): 3491-3498.
- 72. Gobara H, Arai Y, Kobayashi T, et al. Percutaneous radiofrequency ablation for patients with malignant lung tumors: A phase Ⅱ prospective multicenter study (JIVROSG-0702). Jpn J Radiol, 2016, 34(8): 556-563.
- 73. Palussière J, Chomy F, Savina M, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in patients ineligible for surgery: Results of a prospective multicenter phase Ⅱ trial. J Cardiothorac Surg, 2018, 13(1): 91.
- 74. Li G, Xue M, Chen W, et al. Efficacy and safety of radiofrequency ablation for lung cancers: A systematic review and meta-analysis. Eur J Radiol, 2018, 100: 92-98.
- 75. Hu H, Zhai B, Liu R, et al. Microwave ablation versus wedge resection for stage Ⅰnon-small cell lung cancer adjacent to the pericardium: Propensity score analyses of long-term outcomes. Cardiovasc Intervent Radiol, 2021, 44(2): 237-246.
- 76. Ni Y, Huang G, Yang X, et al. Microwave ablation treatment for medically inoperable stage Ⅰ non-small cell lung cancers: Long-term results. Eur Radiol, 2022, 32(8): 5616-5622.
- 77. Han X, Wei Z, Zhao Z, et al. Cost and effectiveness of microwave ablation versus video-assisted thoracoscopic surgical resection for ground-glass nodule lung adenocarcinoma. Front Oncol, 2022, 12: 962630.
- 78. Sun YD, Zhang H, Liu JZ, et al. Efficacy of radiofrequency ablation and microwave ablation in the treatment of thoracic cancer: A systematic review and meta-analysis. Thorac Cancer, 2019, 10(3): 543-550.
- 79. Yuan Z, Wang Y, Zhang J, et al. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol, 2019, 16(3): 302-314.
- 80. Macchi M, Belfiore MP, Floridi C, et al. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol, 2017, 34(5): 96.
- 81. Jiang B, Mcclure MA, Chen T, et al. Efficacy and safety of thermal ablation of lung malignancies: A Network meta-analysis. Ann Thorac Med, 2018, 13(4): 243-250.
- 82. Kodama H, Yamakado K, Hasegawa T, et al. Radiofrequency ablation for ground-glass opacity-dominant lung adenocarcinoma. J Vasc Interv Radiol, 2014, 25(3): 333-339.
- 83. Iguchi T, Hiraki T, Gobara H, et al. Percutaneous radiofrequency ablation of lung cancer presenting as ground-glass opacity. Cardiovasc Intervent Radiol, 2015, 38(2): 409-415.
- 84. Liu S, Liang B, Li Y, et al. CT-guided percutaneous cryoablation in patients with lung nodules mainly composed of ground-glass opacities. J Vasc Interv Radiol, 2022, 33(8): 942-948.
- 85. Yang X, Ye X, Lin Z, et al. Computed tomography-guided percutaneous microwave ablation for treatment of peripheral ground-glass opacity-Lung adenocarcinoma: A pilot study. J Cancer Res Ther, 2018, 14(4): 764-771.
- 86. 谭晓刚, 刘宝东. 射频消融治疗肺磨玻璃结节的临床价值. 中国肺癌杂志, 2021, 24(10): 677-682.
- 87. Santos RS, Gupta A, Ebright MI, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg, 2010, 89(1): 265-268.
- 88. Koizumi T, Tsushima K, Tanabe T, et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration, 2015, 90(1): 47-55.
- 89. Xie F, Zheng X, Xiao B, et al. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration, 2017, 94(3): 293-298.
- 90. 叶欣, 王俊, 危志刚, 等. 热消融治疗肺部亚实性结节专家共识 (2021年版). 中国肺癌杂志, 2021, 24(5): 305-322.
- 91. 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南 (2021版). 中华医学杂志, 2021, 101(23): 1725-1757.
- 92. Wu YL, Tsuboi M, He J, et al. Osimertinib in Resected EGFR-mutated non-small-cell lung cancer. N Engl J Med, 2020, 383(18): 1711-1723.
- 93. Herbst RS, Wu YL, John T, et al. Adjuvant osimertinib for resected EGFR-mutated stageⅠB-ⅢA non-small-cell lung cancer: Updated results from the phase Ⅲ randomized ADAURA trial. J Clin Oncol, 2023, 41(10): 1830-1840.
- 94. Ou W, Li N, Wang BX, et al. Adjuvant icotinib versus observation in patients with completely resected EGFR-mutated stageⅠB NSCLC (GASTO1003, CORIN): A randomised, open-label, phase 2 trial. EClinicalMedicine, 2023, 57: 101839.
- 95. Westeel V, Foucher P, Scherpereel A, et al. Chest CT scan plus X-ray versus chest X-ray for the follow-up of completely resected non-small-cell lung cancer (IFCT-0302): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol, 2022, 23(9): 1180-1188.
- 96. Heiden BT, Eaton DB, Chang SH, et al. Association between imaging surveillance frequency and outcomes following surgical treatment of early-stage lung cancer. J Natl Cancer Inst, 2023, 115(3): 303-310.
- 97. Xia L, Mei J, Kang R, et al. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: A prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res, 2022, 28(15): 3308-3317.
- 98. 刘宝东, 支修益. 影像引导下热消融治疗肺部肿瘤的局部疗效评价. 中国医学前沿杂志 (电子版), 2015, 7(2): 11-14.
- 99. Ye X, Fan W, Wang Z, et al. Expert consensus on thermal ablation therapy of pulmonary subsolid nodules (2021 Edition). J Cancer Res Ther, 2021, 17(5): 1141-1156.
- 100. Kim HK, Choi YS, Kim J, et al. Management of multiple pure ground-glass opacity lesions in patients with bronchioloalveolar carcinoma. J Thorac Oncol, 2010, 5(2): 206-210.
- 101. Shimada Y, Saji H, Otani K, et al. Survival of a surgical series of lung cancer patients with synchronous multiple ground-glass opacities, and the management of their residual lesions. Lung Cancer, 2015, 88(2): 174-180.
- 102. Hattori A, Matsunaga T, Takamochi K, et al. Surgical management of multifocal ground-glass opacities of the lung: Correlation of clinicopathologic and radiologic findings. Thorac Cardiovasc Surg, 2017, 65(2): 142-149.
- 103. Gao RW, Berry MF, Kunder CA, et al. Survival and risk factors for progression after resection of the dominant tumor in multifocal, lepidic-type pulmonary adenocarcinoma. J Thorac Cardiovasc Surg, 2017, 154(6): 2092-2099.