1. |
葛均波. 结构性心脏病的定义、范畴及其现状和未来. 上海医学, 2021, 44(4): 217-220.
|
2. |
Bartel T, Rivard A, Jimenez A, et al. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery. Eur Heart J, 2018, 39(15): 1246-1254.
|
3. |
Vigil C, Lasso A, Ghosh RM, et al. Modeling tool for rapid virtual planning of the intracardiac baffle in double-outlet right ventricle. Ann Thorac Surg, 2021, 111(6): 2078-2083.
|
4. |
Hussein N, Honjo O, Haller C, et al. Quantitative assessment of technical performance during hands-on surgical training of the arterial switch operation using 3-dimensional printed heart models. J Thorac Cardiovasc Surg, 2020, 160(4): 1035-1042.
|
5. |
Shi B, Pan Y, Luo W, et al. Impact of 3D printing on short-term outcomes of biventricular conversion from single ventricular palliation for the complex congenital heart defects. Front Cardiovasc Med, 2021, 8: 801444.
|
6. |
Yang DH, Park SH, Kim N, et al. Incremental value of 3D printing in the preoperative planning of complex congenital heart disease surgery. JACC Cardiovasc Imaging, 2021, 14(6): 1265-1270.
|
7. |
Cen J, Rong L, Wen S, et al. Three-dimensional printing, virtual reality and mixed reality for pulmonary atresia: Early surgical outcomes evaluation. Heart Lung Circ, 2021, 30(2): 296-302.
|
8. |
邱海龙, 庄建, 岑坚正, 等. 虚拟现实技术在冠状动脉瘘和冠状动脉异常起源外科诊疗中的应用价值. 中国胸心血管外科临床杂志, 2019, 26(3): 217-221.
|
9. |
Nam HH, Herz C, Lasso A, et al. Simulation of transcatheter atrial and ventricular septal defect device closure within three-dimensional echocardiography-derived heart models on screen and in virtual reality. J Am Soc Echocardiogr, 2020, 33(5): 641-644.
|
10. |
Butera G, Sturla F, Pluchinotta FR, et al. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv, 2019, 12(14): 1389-1391.
|
11. |
Ma J, Liu J, Yuan H, et al. Two-port thoracoscopic myectomy for hypertrophic cardiomyopathy with three-dimensional printing. Ann Thorac Surg, 2021, 111(3): 165-168.
|
12. |
Qian Z, Wang K, Liu S, et al. Quantitative prediction of paravalvular leak in transcatheter aortic valve replacement based on tissue-mimicking 3D printing. JACC Cardiovasc Imaging, 2017, 10(7): 719-731.
|
13. |
Wang DD, Eng M, Greenbaum A, et al. Predicting LVOT obstruction after TMVR. JACC Cardiovasc Imaging, 2016, 9(11): 1349-1352.
|
14. |
Qiu H, Huang M, Cen J, et al. VR and 3D printing for preop planning of left ventricular myxoma in a child. Ann Thorac Surg, 2022, 113(6): 457-460.
|
15. |
Yao Z, Xie W, Zhang J, et al. ImageTBAD: A 3D computed tomography angiography image dataset for automatic segmentation of type-B aortic dissection. Front Physiol, 2021, 12: 732711.
|
16. |
Brun H, Bugge RAB, Suther LKR, et al. Mixed reality holograms for heart surgery planning: First user experience in congenital heart disease. Eur Heart J Cardiovasc Imaging, 2019, 20(8): 883-888.
|
17. |
Guo HC, Wang Y, Dai J, et al. Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: A preliminary study. J Thorac Dis, 2018, 10(2): 867-873.
|
18. |
Moore RA, Riggs KW, Kourtidou S, et al. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Birth Defects Res, 2018, 110(13): 1082-1090.
|
19. |
Mendez A, Hussain T, Hosseinpour AR, et al. Virtual reality for preoperative planning in large ventricular septal defects. Eur Heart J, 2019, 40(13): 1092.
|
20. |
Sadeghi AH, Taverne YJHJ, Bogers AJJC, et al. Immersive virtual reality surgical planning of minimally invasive coronary artery bypass for Kawasaki disease. Eur Heart J, 2020, 41(34): 3279.
|
21. |
Farooqi KM, Saeed O, Zaidi A, et al. 3D Printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail, 2016, 4(4): 301-311.
|
22. |
Kasprzak JD, Pawlowski J, Peruga JZ, et al. First-in-man experience with real-time holographic mixed reality display of three-dimensional echocardiography during structural intervention: Balloon mitral commissurotomy. Eur Heart J, 2020, 41(6): 801.
|
23. |
Valverde I, Gomez G, Byrne N, et al. Criss-cross heart three-dimensional printed models in medical education: A multicenter study on their value as a supporting tool to conventional imaging. Anat Sci Educ, 2022, 15(4): 719-730.
|
24. |
Valverde I, Gomez-Ciriza G, Hussain T, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: An international multicentre study. Eur J Cardiothorac Surg, 2017, 52(6): 1139-1148.
|
25. |
Qiu H, Wen S, Ji E, et al. A novel 3D visualized operative procedure in the single-stage complete repair with unifocalization of pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries. Front Cardiovasc Med, 2022, 9: 836200.
|
26. |
Baumgartner H, De Backer J, Babu-Narayan SV, et al. 2020 ESC guidelines for the management of adult congenital heart disease. Eur Heart J, 2021, 42(6): 563-645.
|
27. |
Lau I, Gupta A, Ihdayhid A, et al. Clinical applications of mixed reality and 3D printing in congenital heart disease. Biomolecules, 2022, 12(11): 1548.
|
28. |
Xu XW, Qiu HL, Jia QJ, et al. AI-CHD: An AI-based framework for cost-effective surgical telementoring of congenital heart disease. Commun Acm, 2021, 64(12): 66-74.
|
29. |
Yao Z, Hu X, Liu X, et al. A machine learning-based pulmonary venous obstruction prediction model using clinical data and CT image. Int J Comput Assist Radiol Surg, 2021, 16(4): 609-617.
|
30. |
李艺, 陶凉, 周宏, 等. 计算流体力学在主动脉根部重建手术中的应用. 中国胸心血管外科临床杂志, 2021, 28(12): 1482-1487.
|
31. |
Wang H, Song H, Yang Y, et al. Morphology display and hemodynamic testing using 3D printing may aid in the prediction of LVOT obstruction after mitral valve replacement. Int J Cardiol, 2021, 331: 296-306.
|
32. |
Kwan AC, Pourmorteza A, Stutman D, et al. Next-generation hardware advances in CT: Cardiac applications. Radiology, 2021, 298(1): 3-17.
|
33. |
Gonzalez-Tendero A, Zhang C, Balicevic V, et al. Whole heart detailed and quantitative anatomy, myofibre structure and vasculature from X-ray phase-contrast synchrotron radiation-based micro computed tomography. Eur Heart J Cardiovasc Imaging, 2017, 18(7): 732-741.
|
34. |
Shinohara G, Morita K, Hoshino M, et al. Three dimensional visualization of human cardiac conduction tissue in whole heart specimens by high-resolution phase-contrast CT imaging using synchrotron radiation. World J Pediatr Congenit Heart Surg, 2016, 7(6): 700-705.
|
35. |
Johnson GA, Tian Y, Ashbrook DG, et al. Merged magnetic resonance and light sheet microscopy of the whole mouse brain. Proc Natl Acad Sci U S A, 2023, 120(17): e2218617120.
|