1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
2. |
Fitzmaurice C, Akinyemiju TF, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol, 2018, 4(11): 1553-1568.
|
3. |
Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol, 2011, 12(2): 175-180.
|
4. |
Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine. Nat Med, 2022, 28(1): 31-38.
|
5. |
Doppalapudi S, Qiu RG, Badr Y. Lung cancer survival period prediction and understanding: Deep learning approaches. Int J Med Inform, 2021, 148: 104371.
|
6. |
Obermeyer Z, Emanuel EJ. Predicting the future: Big data, machine learning, and clinical medicine. N Engl J Med, 2016, 375(13): 1216-1219.
|
7. |
Arimura H, Soufi M, Kamezawa H, et al. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res, 2019, 60(1): 150-157.
|
8. |
Kontos D, Summers RM, Giger M. Special section guest editorial: Radiomics and deep learning. J Med Imaging (Bellingham), 2017, 4(4): 041301.
|
9. |
Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med, 2020, 383(7): 640-649.
|
10. |
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin, 2019, 69(5): 363-385.
|
11. |
Singhal S, Vachani A, Antin-Ozerkis D, et al. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: A review. Clin Cancer Res, 2005, 11(11): 3974-3986.
|
12. |
Chen W, Hou X, Hu Y, et al. A deep learning- and CT image-based prognostic model for the prediction of survival in non-small cell lung cancer. Med Phys, 2021, 48(12): 7946-7958.
|
13. |
Lin T, Mai J, Yan M, et al. A nomogram based on CT deep learning signature: A potential tool for the prediction of overall survival in resected non-small cell lung cancer patients. Cancer Manag Res, 2021, 13: 2897-2906.
|
14. |
Caruso CM, Guarrasi V, Cordelli E, et al. A multimodal ensemble driven by multiobjective optimisation to predict overall survival in non-small-cell lung cancer. J Imaging, 2022, 8(11): 298.
|
15. |
Lu CF, Liao CY, Chao HS, et al. A radiomics-based deep learning approach to predict progression free-survival after tyrosine kinase inhibitor therapy in non-small cell lung cancer. Cancer Imaging, 2023, 23(1): 9.
|
16. |
Deng K, Wang L, Liu Y, et al. A deep learning-based system for survival benefit prediction of tyrosine kinase inhibitors and immune checkpoint inhibitors in stage Ⅳ non-small cell lung cancer patients: A multicenter, prognostic study. EClinicalMedicine, 2022, 51: 101541.
|
17. |
Gainey JC, He Y, Zhu R, et al. Predictive power of deep-learning segmentation based prognostication model in non-small cell lung cancer. Front Oncol, 2023, 13: 868471.
|
18. |
Lu L, Wang D, Wang L, et al. A quantitative imaging biomarker for predicting disease-free-survival-associated histologic subgroups in lung adenocarcinoma. Eur Radiol, 2020, 30(7): 3614-3623.
|
19. |
Ahn Y, Lee SM, Choi S, et al. Automated CT quantification of interstitial lung abnormality and interstitial lung disease according to the Fleischner Society in patients with resectable lung cancer: Prognostic significance. Eur Radiol, 2023, 33(11): 8251-8262.
|
20. |
Zhu Y, Chen LL, Luo YW, et al. Prognostic impact of deep learning-based quantification in clinical stage 0-Ⅰlung adenocarcinoma. Eur Radiol, 2023, 33(12): 8542-8553.
|
21. |
Wang S, Rong R, Yang DM, et al. Computational staining of pathology images to study the tumor microenvironment in lung cancer. Cancer Res, 2020, 80(10): 2056-2066.
|
22. |
Guo H, Diao L, Zhou X, et al. Artificial intelligence-based analysis for immunohistochemistry staining of immune checkpoints to predict resected non-small cell lung cancer survival and relapse. Transl Lung Cancer Res, 2021, 10(6): 2452-2474.
|
23. |
Litière S, Collette S, de Vries EG, et al. RECIST - learning from the past to build the future. Nat Rev Clin Oncol, 2017, 14(3): 187-192.
|
24. |
Li S, Li W, Ma T, et al. Assessing the efficacy of immunotherapy in lung squamous carcinoma using artificial intelligence neural network. Front Immunol, 2022, 13: 1024707.
|
25. |
Li W, Fu S, Gao X, et al. Immunotherapy efficacy predictive tool for lung adenocarcinoma based on neural network. Front Immunol, 2023, 14: 1141408.
|
26. |
Mehlen P, Puisieux A. Metastasis: A question of life or death. Nat Rev Cancer, 2006, 6(6): 449-458.
|
27. |
Wu J, Aguilera T, Shultz D, et al. Early-stage nonsmall cell lung cancer: Quantitative imaging characteristics of (18)F fluorodeoxyglucose PET/CT allow prediction of distant metastasis. Radiology, 2016, 81: 270-278.
|
28. |
Zhou H, Dong D, Chen B, et al. Diagnosis of distant metastasis of lung cancer: Based on clinical and radiomic features. Transl Oncol, 2018, 11(1): 31-36.
|
29. |
Tau N, Stundzia A, Yasufuku K, et al. Convolutional neural networks in predicting nodal and distant metastatic potential of newly diagnosed non-small cell lung cancer on FDG PET images. AJR Am J Roentgenol, 2020, 215(1): 192-197.
|
30. |
Xu Y, Hosny A, Zeleznik R, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res, 2019, 25(11): 3266-3275.
|
31. |
Petitprez F, Vano YA, Becht E, et al. Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother, 2018, 67(6): 981-988.
|
32. |
Qi C, Cai Y, Qian K, et al. GutMDisorder v2.0: A comprehensive database for dysbiosis of gut microbiota in phenotypes and interventions. Nucleic Acids Res, 2023, 51(D1): D717-D722.
|
33. |
Wu K, Xu L, Cheng L. PAR2 promoter hypomethylation regulates PAR2 gene expression and promotes lung adenocarcinoma cell progression. Comput Math Methods Med, 2021, 2021: 5542485.
|
34. |
Albaradei S, Napolitano F, Thafar MA, et al. Meta cancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data. Comput Struct Biotechnol J, 2021, 19: 4404-4411.
|
35. |
Liu D, Yao L, Ding X, et al. Multi-omics immune regulatory mechanisms in lung adenocarcinoma metastasis and survival time. Comput Biol Med, 2023, 164: 107333.
|
36. |
Sturgeon KM, Deng L, Bluethmann SM, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J, 2019, 40(48): 3889-3897.
|
37. |
Chao H, Shan H, Homayounieh F, et al. Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography. Nat Commun, 2021, 12(1): 2963.
|
38. |
Liang B, Tian Y, Chen X, et al. Prediction of radiation pneumonitis with dose distribution: A convolutional neural network (CNN) based model. Front Oncol, 2020, 9: 1500.
|
39. |
Cui S, Ten Haken RK, El Naqa I. Integrating multiomics information in deep learning architectures for joint actuarial outcome prediction in non-small cell lung cancer patients after radiation therapy. Int J Radiat Oncol Biol Phys, 2021, 110(3): 893-904.
|
40. |
Bang YH, Choi YH, Park M, et al. Clinical relevance of deep learning models in predicting the onset timing of cancer pain exacerbation. Sci Rep, 2023, 13(1): 11501.
|
41. |
Shorten C, Khoshgoftaar MT. A survey on image data augmentation for deep learning. J Big Data, 2019, 6: 60.
|
42. |
Kwon HJ, Koo HI, Soh JW, et al. Inverse-based approach to explaining and visualizing convolutional neural networks. IEEE Trans Neural Netw Learn Syst, 2022, 33(12): 7318-7329.
|
43. |
Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization. IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, Las Vegas, USA, 2016.
|