1. |
Qi K, Wang K, Wang X, et al. Lung-PNet: An automated deep learning model for the diagnosis of invasive adenocarcinoma in pure ground-glass nodules on chest CT. AJR Am J Roentgenol, 2024, 222(1): e2329674.
|
2. |
Succony L, Rassl DM, Barker AP, et al. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat Rev, 2021, 99: 102237.
|
3. |
Kao TN, Hsieh MS, Chen LW, et al. CT-based radiomic analysis for preoperative prediction of tumor invasiveness in lung adenocarcinoma presenting as pure ground-glass nodule. Cancers (Basel), 2022, 14(23): 5888.
|
4. |
Fu F, Chen Z, Chen H. Treating lung cancer: Defining surgical curative time window. Cell Res, 2023, 33(9): 649-650.
|
5. |
Yotsukura M, Asamura H, Motoi N, et al. Long-term prognosis of patients with resected adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung. J Thorac Oncol off Publ Int Assoc Study Lung Cancer, 2021, 16(8): 1312-1320.
|
6. |
Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol, 2022, 17(3): 362-387.
|
7. |
Nicholson AG, Scagliotti G, Tsao MS, et al. 2021 WHO classification of lung cancer: A globally applicable and molecular biomarker-relevant classification. J Thorac Oncol, 2022, 17(9): e80-e83.
|
8. |
Hu F, Huang H, Jiang Y, et al. Discriminating invasive adenocarcinoma among lung pure ground-glass nodules: A multi-parameter prediction model. J Thorac Dis, 2021, 13(9): 5383-5394.
|
9. |
Xu F, Zhu W, Shen Y, et al. Radiomic-based quantitative CT analysis of pure ground-glass nodules to predict the invasiveness of lung adenocarcinoma. Front Oncol, 2020, 10: 872.
|
10. |
Liu J, Yang X, Li Y, et al. Predicting the invasiveness of pulmonary adenocarcinomas in pure ground-glass nodules using the nodule diameter: A systematic review, meta-analysis, and validation in an independent cohort. Diagnostics (Basel), 2024, 14(2): 147.
|
11. |
万辉, 高美玲, 林洁, 等. 不同类型的肺部磨玻璃结节患者术前免疫炎症指标和癌胚抗原的比较. 温州医科大学学报, 2022, 52(7): 557-561.Wan H, Gao ML, Lin J, et al. Comparison of preoperative immune-inflammation index and carcinoembryonic antigen in different pathological types of ground-glass opacity. J Wenzhou Med Univ, 2022, 52(7): 557-561.
|
12. |
Yang HH, Lv YL, Fan XH, et al. Factors distinguishing invasive from pre-invasive adenocarcinoma presenting as pure ground glass pulmonary nodules. Radiat Oncol, 2020, 15(1): 186.
|
13. |
Feng H, Shi G, Xu Q, et al. Radiomics-based analysis of CT imaging for the preoperative prediction of invasiveness in pure ground-glass nodule lung adenocarcinomas. Insights Imaging, 2023, 14(1): 24.
|
14. |
Gao J, Qi Q, Li H, et al. Artificial-intelligence-based computed tomography histogram analysis predicting tumor invasiveness of lung adenocarcinomas manifesting as radiological part-solid nodules. Front Oncol, 2023, 13: 1096453.
|
15. |
Gao X, Tan H, Zhu M, et al. Construction and validation of a clinical differentiation model between peripheral lung cancer and solitary pulmonary tuberculosis. Lung Cancer, 2024, 193: 107851.
|
16. |
Cai Y, Chen T, Zhang S, et al. Correlation exploration among CT imaging, pathology and genotype of pulmonary ground-glass opacity. J Cell Mol Med, 2023, 27(14): 2021-2031.
|
17. |
Yang Y, Xu J, Wang W, et al. Meta-analysis of the correlation between CT-based features and invasive properties of pure ground-glass nodules. Asian J Surg, 2023, 46(9): 3405-3416.
|
18. |
Yang Y, Xu J, Wang W, et al. A nomogram based on the quantitative and qualitative features of CT imaging for the prediction of the invasiveness of ground glass nodules in lung adenocarcinoma. BMC Cancer, 2024, 24(1): 438.
|
19. |
Kou J, Gu X, Kang L. Correlation analysis of computed tomography features and pathological types of multifocal ground-glass nodular lung adenocarcinoma. Comput Math Methods Med, 2022, 2022: 7267036.
|
20. |
孟颖, 刘欢, 蔡久媺. 肺磨玻璃结节与组织学及CT特征分析. 中华肺部疾病杂志(电子版), 2022, 15(3): 400-402.Meng Y, Liu H, Cai JM. Analysis of pulmonary ground glass nodules and histology and CT characteristics. Chin J Lung Dis (Electron Ed), 2022, 15(3): 400-402.
|
21. |
Wang L, Zhang M, Pan X, et al. Integrative serum metabolic fingerprints based multi-modal platforms for lung adenocarcinoma early detection and pulmonary nodule classification. Adv Sci (Weinh), 2022, 9(34): e2203786.
|
22. |
Li Z, Wu W, Pan X, et al. Serum tumor markers level and their predictive values for solid and micropapillary components in lung adenocarcinoma. Cancer Med, 2022, 11(14): 2855-2864.
|
23. |
张汝思, 张梅芳, 高树庚, 等. 第五版胸部肿瘤WHO分类中肺原位腺癌分类更改的解读. 中国胸心血管外科临床杂志, 2021, 28(9): 1012-1015.Zhang RS, Zhang MF, Gao SG, et al. Opinions on the reclassification of pulmonary adenocarcinoma in situ in the fifth edition of WHO classification of thoracic tumours. Chin J Clin Thorac Cardiovasc Surg, 2021, 28(9): 1012-1015.
|
24. |
中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版). 中华肿瘤杂志, 2022, 44(6): 457-490.Oncology Society of Chinese Medical Association, Chinese Medical Association Publishing House. Chinese Medical Association guideline for clinical diagnosis and treatment of lung cancer (2022 edition). Chin J Oncol, 2022, 44(6): 457-490.
|