- 1. Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China;
- 2. Department of Cardiopulmonary Bypass, Guangdong Provincial People's Hospital of Southern Medical University, Guangzhou, 510100, P. R. China;
- 3. Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China;
Working Group on Extracorporeal Life Support, National Center for Cardiovascular Quality Improvement developed guidelines on patient blood management for adult cardiovascular surgery under cardiopulmonary bypass, aiming to standardize patient blood management in adult cardiovascular surgery under cardiopulmonary bypass, reduce blood resource consumption, and improve patients outcomes. Forty-eight domestic experts participated in the development of the guidelines. Based on prior investigation and the PICO (patient, intervention, control, outcome) principles, thirteen clinical questions from four aspects were selected, including priming and fluid management during cardiopulmonary bypass, anticoagulation and monitoring during cardiopulmonary bypass, peri-cardiopulmonary bypass blood product infusion, and autologous blood infusion. Systemic reviews to the thirteen questions were performed through literature search. Recommendations were drafted using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. After five rounds of experts discussions between 2023 and 2024, 19 recommendations were finally formed.
Citation: DU Lei, ZHOU Chengbin, JI Bingyang, Working Group on Extracorporeal Life Support, National Center for Cardiovascular Quality Improvement. Guidelines on patient blood management for adult cardiovascular surgery under cardiopulmonary bypass. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(11): 1547-1559. doi: 10.7507/1007-4848.202408050 Copy
1. | 国家心血管病医疗质量控制中心, 国家心血管病专家委员会. 2022年国家医疗服务与质量安全报告. 心血管病专业分册. 北京: 中国协和医科大学出版社, 2023: 2.National Center for Cardiovascular Quality Improvement, National Expert Commission for Cardiovascular Diseases. 2022 Report on National Medical Service and Quality Safety: Cardiovascular Disease Specialty Volume. Peking Union Medical College Press. 2023: 2. |
2. | 吉冰洋. 体外循环医师在心血管手术血液管理中的重要角色. 中国体外循环杂志, 2022, 20(1): 1-2.Ji BY. The key role of perfusionists in patient blood management in cardiovascular surgery. Chin J ECC, 2022, 20(1): 1-2. |
3. | Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Ferraris SP, et al. Perioperative blood transfusion and blood conservation in cardiac surgery: The Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg, 2007, 83(5 Suppl): S27-S86. |
4. | Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Brown JR, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg, 2011, 91(3): 944-982. |
5. | Tibi P, McClure RS, Huang J, et al. STS/SCA/AmSECT/SABM update to the clinical practice guidelines on patient blood management. Ann Thorac Surg, 2021, 112(3): 981-1004. |
6. | Task Force on Patient Blood Management for Adult Cardiac Surgery of the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Cardiothoracic Anaesthesiology (EACTA), Boer C, Meesters MI, et al. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. J Cardiothorac Vasc Anesth, 2018, 32(1): 88-120. |
7. | 胡盛寿, 纪宏文, 孙寒松, 等. 心血管手术患者血液管理专家共识. 中国输血杂志, 2018, 31(4): 321-325.Hu SS, Ji HW, Sun HS, et al. Chinese experts consensus statement on patient blood management in patients undergoing cardiovascular surgery. Chin J Blood Transfusion, 2018, 31(4): 321-325. |
8. | Mazer CD, Whitlock RP, Fergusson DA, et al. Restrictive or liberal redcell transfusion for cardiac surgery. N Engl J Med, 2017, 377: 2133-2144. |
9. | Mazer CD, Whitlock RP, Fergusson DA, et al. Six-month outcomes after restrictive or liberal transfusion for cardiac surgery. N Engl J Med, 2018, 379(13): 1224-1233. |
10. | Shi J, Zhou C, Pan W, et al. Effect of high- vs low-dose tranexamic acid infusion on need for red blood cell transfusion and adverse events in patients undergoing cardiac surgery: The OPTIMAL randomized clinical trial. JAMA, 2022, 328(4): 336-347. |
11. | Carson JL, Stanworth SJ, Guyatt G, et al. Red blood cell transfusion: 2023 AABB international guidelines. JAMA, 2023, 330(19): 1892-1902. |
12. | 闫姝洁, 章晓华, 侯晓彤, 等. 全国体外循环血液管理问卷调查研究. 中国体外循环杂志, 2022, 20(5): 261-266.Yan SJ, Zhang XH, Hou XT, et al. Questionaire survey on cardiopulmonary bypass blood management in China. Chin J ECC, 2022, 20(5): 261-266. |
13. | World Health Organization. WHO handbook for guideline development, 2nd ed (2014). URL: https://apps.who.int/iris/handle/10665/145714. Accessed on 2022-06-20. |
14. | 陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则(2022). 中华医学杂志, 2022, 102(10): 697-703.Chen YL, Yang KH, Wang XQ, et al. Principles for developing/revising clinical diagnosis and treatment guidelines in China (2022). Nat Med J Chin, 2022, 102(10): 697-703. |
15. | Guyatt GH, Thorlund K, Oxman AD, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol, 2013, 66(2): 173-183. |
16. | Sun BC, Dickinson TA, Tesdahl EA, et al. The unintended consequences of over-reducing cardiopulmonary bypass circuit prime volume. Ann Thorac Surg, 2017, 103(6): 1842-1848. |
17. | Dickinson TA, Wu X, Sturmer DL, et al. Net prime volume is associated with increased odds of blood transfusion. J Extra Corpor Technol, 2019, 51(4): 195-200. |
18. | Berretta P, Cefarelli M, Montecchiani L, et al. Minimally invasive versus standard extracorporeal circulation system in minimally invasive aortic valve surgery: A propensity score-matched study. Eur J Cardiothorac Surg, 2020, 57(4): 717-723. |
19. | Gao S, Li Y, Diao X, et al. Vacuum-assisted venous drainage in adult cardiac surgery: A propensity-matched study. Interact Cardiovasc Thorac Surg, 2020, 30(2): 236-242. |
20. | 刘刚, 曾庆东, 郑哲, 等. 迷你化心肺转流和传统心肺转流的临床应用比较. 中华外科杂志, 2016, 54(8): 613-616.Liu G, Zeng QD, Zheng Z, et al. Clinical application of modified minimally cardiopulmonary bypass: compared with conventional cardiopulmonary bypass. Chin J Surg, 2016, 54(8): 613-616. |
21. | Zhang Q, Zhao W, Gao S, et al. Quality management of a comprehensive blood conservation program during cardiopulmonary bypass. Ann Thorac Surg, 2022, 114(1): 142-150. |
22. | 刘侠丽, 谭赵霞, 秦臻, 等. 华西综合血液管理策略减少体外循环患者异体血需要. 中国体外循环杂志, 2022, 20(4): 200-206, 225.Liu XL, Tan ZX, Qin Z, et al. Huaxi integrated blood management reduces the requirements of allogenic blood for patients undergoing cardiopulmonary bypass. Chin J ECC, 2022, 20(4): 200-206, 225. |
23. | 孟擎擎, 徐建军, 周成斌, 等. 改装密闭式体外循环套包在复杂先天性心脏病手术中的应用. 中国体外循环杂志, 2014, 12(4): 234-236, 244.Meng QQ, Xu JJ, Zhou CB, et al. Application of modified closed extracorporeal circulation circuis in the complex congenital heart disease. Chin J ECC, 2014, 12(4): 234-236, 244. |
24. | 刘小清, 陈寄梅, 周成斌, 等. 微小化管道技术对新生儿先天性心脏病围术期病死率的影响. 中华胸心血管外科杂志, 2018, 34(11): 6.Liu XQ, Chen JM, Zhou CB, et al. Effect of minimized cardiopulmonary bypass circuit on perioperative mortality in neonates with congenital heart disease. Chin J Thorac Cardiovasc Surg, 2018, 34(11): 6. |
25. | Hou X, Yang F, Liu R, et al. Retrograde autologous priming of the cardiopulmonary bypass circuit reduces blood transfusion in small adults: A prospective, randomized trial. Eur J Anaesthesiol, 2009, 26(12): 1061-1066. |
26. | Gupta S, McEwen C, Basha A, et al. Retrograde autologous priming in cardiac surgery: A systematic review and meta-analysis. Eur J Cardiothorac Surg, 2021, 60(6): 1245-1256. |
27. | Miles LF, Coulson TG, Galhardo C, et al. Pump priming practices and anticoagulation in cardiac surgery: Results from the global cardiopulmonary bypass survey. Anesth Analg, 2017, 125(6): 1871-1877. |
28. | Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg, 2012, 255: 821-829. |
29. | Bampoe S, Odor PM, Dushianthan A, et al. Perioperative administration of buffered versus non-buffered crystalloid intravenous fluid to improve outcomes following adult surgical procedures. Cochrane Database Syst Rev, 2017, 9(9): CD004089. |
30. | Beukers AM, de Ruijter JAC, Loer SA, et al. Effects of crystalloid and colloid priming strategies for cardiopulmonary bypass on colloid oncotic pressure and haemostasis: A meta-analysis. Interact Cardiovasc Thorac Surg, 2022, 35(3): ivac127. |
31. | Xian-Yu CY, Xu JB, Ma YT, et al. Management of priming fluids in cardiopulmonary bypass for adult cardiac surgery: Network meta-analysis. Ann Med, 2023, 55(2): 2246996. |
32. | Wang T, Wang J, Zhang M, et al. Effects of albumin and crystalloid priming strategies on red blood cell transfusions in on-pump cardiac surgery: A network meta-analysis. BMC Anesthesiol, 2024, 24(1): 26. |
33. | Yin J, Sun M, Zeng Y, et al. Safety and efficacy of albumin for pump priming in cardiac surgery: A meta-analysis. J Cardiothorac Vasc Anesth, 2024, 38(2): 517-525. |
34. | Wei L, Li D, Sun L. The comparison of albumin and 6% hydroxyethyl starches (130/0.4) in cardiac surgery: A meta-analysis of randomized controlled clinical trials. BMC Surg, 2021, 21(1): 342. |
35. | Skubas NJ, Callum J, Bathla A, et al. Intravenous albumin in cardiac and vascular surgery: A systematic review and meta-analysis. Br J Anaesth, 2024, 132(2): 237-250. |
36. | Finfer S, Bellomo R, Boyce N, et al. SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med, 2004, 350: 2247-2256. |
37. | Caironi P, Tognoni G, Masson S, et al. ALBIOS study investigators. N Engl J Med, 2014, 370: 1412-1421. |
38. | Aldecoa C, Llau JV, Nuvials X, et al. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: A review. Ann Intensive Care, 2020, 10(1): 85. |
39. | Pesonen E, Vlasov H, Suojaranta R, et al. Effect of 4% albumin solution vs ringer acetate on major adverse events in patients undergoing cardiac surgery with cardiopulmonary bypass: A randomized clinical trial. JAMA, 2022, 328(3): 251-258. |
40. | Talvasto A, Ilmakunnas M, Raivio P, et al. Albumin infusion and blood loss after cardiac surgery. Ann Thorac Surg, 2023, 116(2): 392-399. |
41. | Berbel-Franco D, Lopez-Delgado JC, Putzu A, et al. The influence of postoperative albumin levels on the outcome of cardiac surgery. J Cardiothorac Surg, 2020, 15(1): 78. |
42. | Padkins M, Breen T, Anavekar N, et al. Association between albumin level and mortality among cardiac intensive care unit patients. J Intensive Care Med, 2021, 36(12): 1475-1482. |
43. | Navickis RJ, Haynes GR, Wilkes MM. Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: A meta-analysis of randomized trials. J Thorac Cardiovasc Surg, 2012, 144(1): 223-230. |
44. | Sheikhi B, Rezaei Y, Baghaei Vaji F, et al. Comparison of six percent hydroxyethyl starch 130/0.4 and ringer's lactate as priming solutions in patients undergoing isolated open heart valve surgery: A double-blind randomized controlled trial. Perfusion, 2023, Online ahead of print. |
45. | Skhirtladze K, Base EM, Lassnigg A, et al. Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.46%, and Ringer's lactate on blood loss and coagulation after cardiac surgery. Br J Anaesth, 2014, 112(2): 255-264. |
46. | Lagny MG, Roediger L, Koch JN, et al. Hydroxyethyl starch 130/0.4 and the risk of acute kidney injury after cardiopulmonary bypass: A single-center retrospective study. J Cardiothorac Vasc Anesth, 2016, 30(4): 869-875. |
47. | Hans GA, Ledoux D, Roediger L, et al. The effect of intraoperative 6% balanced hydroxyethyl starch (130/0. 4) during cardiac surgery on transfusion requirements. J Cardiothorac Vasc Anesth, 2015, 29(2): 328-332. |
48. | 关于修订羟乙基淀粉类注射剂说明书的公告. URL: https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypshmshxdgg/20220906104548135.html. Accessed on 2024-06-21.Announcement on the Revision of the Instructions for Hydroxyethyl Starch Products by CFDA. URL: https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypshmshxdgg/20220906104548135.html. Accessed on 2024-06-21. |
49. | U. S. Food and Drug Administration. Labeling changes on mortality, kidney injury, and excess bleeding with hydroxyethyl starch products. URL: https://www. fda. gov/vaccines-blood-biologics/safety-availability-biologics/labeling-changes-mortality-kidney-injury-and-excess-bleeding-hydroxyethyl-starch-products?_refluxos=a10. Accessed on 2023-12-04. |
50. | Ghijselings I, Himpe D, Rex S. Safety of gelatin solutions for the priming of cardiopulmonary bypass in cardiac surgery: A systematic review and meta-analysis. Perfusion, 2017, 32(5): 350-362. |
51. | Ford SA, Kam PC, Baldo BA, et al. Anaphylactic or anaphylactoid reactions in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth, 2001, 15(6): 684-688. |
52. | Boodhwani M, Williams K, Babaev A, et al. Ultrafiltration reduces blood transfusions following cardiac surgery: A meta-analysis. Eur J Cardiothorac Surg, 2006, 30(6): 892-897. |
53. | Hensley NB, Colao JA, Zorrilla-Vaca A, et al. Ultrafiltration in cardiac surgery: Results of a systematic review and meta-analysis. Perfusion, 2024, 39(4): 743-751. |
54. | Luciani GB, Menon T, Vecchi B, et al. Modified ultrafiltration reduces morbidity after adult cardiac operations: A prospective, randomized clinical trial. Circulation, 2001, 104: I253-I259. |
55. | Paugh TA, Dickinson TA, Martin JR, et al. Impact of ultrafiltration on kidney injury after cardiac surgery: The Michigan experience. Ann Thorac Surg, 2015, 100: 1683-1688. |
56. | Mongero L, Stammers A, Tesdahl E, et al. The effect of ultrafiltration on end-cardiopulmonary bypass hematocrit during cardiac surgery. Perfusion, 2018, 33(5): 367-374. |
57. | Low ZK, Gao F, Sin KYK, et al. Modified ultrafiltration reduces postoperative blood loss and transfusions in adult cardiac surgery: A meta-analysis of randomized controlled trials. Interact CardioVasc Thorac Surg, 2021, 32: 671-682. |
58. | Manning MW, Li YJ, Linder D, et al. Conventional ultrafiltration during elective cardiac surgery and postoperative acute kidney injury. J Cardiothorac Vasc Anesth, 2021, 35(5): 1310-1318. |
59. | Gerami H, Sajedianfard J, Ghasemzadeh B, et al. Is ultrafiltration volume a predictor of postoperative acute kidney injury in patients undergoing cardiopulmonary bypass? Perfusion, 2024, Published online ahead. |
60. | Tanaka KA, Levy JH. Regulation of thrombin activity—Pharmacologic and structural aspects. Hematol/Oncol Clin North America, 2007, 21(1): 33-50. |
61. | Levy JH, Sniecinski RM, Maier CL, et al. Finding a common definition of heparin resistance in adult cardiac surgery: Communication from the ISTH SSC subcommittee on perioperative and critical care thrombosis and hemostasis. J Thromb Haemost, 2024, 22(4): 1249-1257. |
62. | Beattie GW, Jeffrey RR. Is there evidence that fresh frozen plasma is superior to antithrombin administration to treat heparin resistance in cardiac surgery? Interact Cardiovasc Thorac Surg, 2014, 18(1): 117-120. |
63. | Ranucci M, Baryshnikova E, Crapelli GB, et al. Preoperative antithrombin supplementation in cardiac surgery: A randomized controlled trial. J Thorac Cardiovasc Surg, 2013, 145(5): 1393-1399. |
64. | Levy JH, Sniecinski RM, Welsby IJ, et al. Antithrombin: Anti-inflammatory properties and clinical applications. Thromb Haemost, 2016, 115(4): 712-728. |
65. | Sniecinski RM, Bennett-Guerrero E, Shore-Lesserson L. Anticoagulation management and heparin resistance during cardiopulmonary bypass: A survey of Society of Cardiovascular Anesthesiologists members. Anesth Analg, 2019, 129(2): e41-e44. |
66. | Shore-Lesserson L, Baker RA, Ferraris VA, et al. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of ExtraCorporeal Technology: Clinical practice guidelines-anticoagulation during cardiopulmonary bypass. Anesth Analg, 2018, 126(2): 413-424. |
67. | Koster A, Börgermann J, Gummert J, et al. Protamine overdose and its impact on coagulation, bleeding, and transfusions after cardiopulmonary bypass: Results of a randomized double-blind controlled pilot study. Clin Appl Thromb Hemost, 2014, 20(3): 290-295. |
68. | Wang J, Ma HP, Zheng H. Blood loss after cardiopulmonary bypass, standard vs titrated protamine: A meta-analysis. Neth J Med, 2013, 71: 123-127. |
69. | 唐佳丽, 秦臻, 杜磊. 滴定法预测肝素-鱼精蛋白量减少体外循环术后出血. 中国胸心血管外科临床杂志, 2013, 20(6): 723-724.Tang JL, Qin Z, Du L. Titration method for protamine dosage reduces postoperative bleeding after cardiopulmonary bypass. Chin J Clin Thorac Cardiovasc Surg, 2013, 20(6): 723-724. |
70. | Guo Y, Tang J, Du L, et al. Protamine dosage based on two titrations reduces blood loss after valve replacement surgery: A prospective, double-blinded, randomized study. Can J Cardiol, 2012, 28(5): 547-552. |
71. | Suarez Cuenca J, Gayoso Diz P, Gude Sampedro F, et al. Method to calculate the protamine dose necessary for reversal of heparin as a function of activated clotting time in patients undergoing cardiac surgery. J Extra Corpor Technol, 2013, 45: 235-241. |
72. | Hallgren O, Svenmarker S, Appelblad M. Implementing a statistical model for protamine titration: Effects on coagulation in cardiac surgical patient. J Cardiothorac Vasc Anesth, 2017, 31: 516-521. |
73. | MeestersMI, VeerhoekD, de Jong JR, et al. A pharmacokinetic model for protamine dosing after cardiopulmonary bypass. J Cardiothorac Vasc Anesth, 2016, 30: 1190-1195. |
74. | Raner G, Hu Y, Trowbridge C, et al. Comparison of blood concentration and weight-based heparin and protamine dosing strategies for cardiopulmonary bypass: A systematic review and meta-analysis. Cureus, 2024, 16(2): e54144. |
75. | Hecht P, Besser M, Falter F. Are we able to dose protamine accurately yet? A review of the protamine conundrum. J Extra Corpor Technol, 2020, 52(1): 63-70. |
76. | Martin P, Horkay F, Gupta NK, et al. Heparin rebound phenomenon--much ado about nothing? Blood Coagul Fibrinolysis, 1992, 3(2): 187-191. |
77. | Teoh KH, Young E, Blackall MH, et al. Can extra protamine eliminate heparin rebound following cardiopulmonary bypass surgery? J Thorac Cardiovasc Surg, 2004, 128(2): 211-219. |
78. | 中国体外循环专业技术标准(2021版). 中国体外循环杂志, 2021, 19(2): 67-72.Technology standards of extracorporeal circulation in China (2021). Chin J ECC, 2021, 19(2): 67-72. |
79. | Olsson P, Lagergren H, Ek S. The elimination from plasma of intravenous heparin. An experimental study on dogs and humans. Acta Med Scand, 1963, 173: 619-630. |
80. | Li H, Serrick C, Rao V, et al. A comparative analysis of four activated clotting time measurement devices in cardiac surgery with cardiopulmonary bypass. Perfusion, 2021, 36(6): 610-619. |
81. | Solís Clavijo D, Cotano AO, Peña NA, et al. Variability of three activated clotting time point-of-care systems in cardiac surgery: Reinforcing available evidence. Perfusion, 2022, 37(7): 711-714. |
82. | Othman M, Kaur H. Thromboelastography (TEG). Methods Mol Biol, 2017, 1646: 533-543. |
83. | Schmidt AE, Israel AK, Refaai MA. The utility of thromboelastography to guide blood product transfusion. Am J Clin Pathol, 2019, 152(4): 407-422. |
84. | Venema LF, Post WJ, Hendriks HG, et al. An assessment of clinical interchangeability of TEG and RoTEM thromboelastographic variables in cardiac surgical patients. Anesth Analg, 2010, 111(2): 339-344. |
85. | Tanaka KA, Bolliger D, Vadlamudi R, et al. Rotational thromboelastometry (ROTEM)-based coagulation management in cardiac surgery and major trauma. J Cardiothorac Vasc Anesth, 2012, 26(6): 1083-1093. |
86. | Karkouti K, Callum J, Wijeysundera DN, et al. Point-of-care hemostatic testing in cardiac surgery: A stepped-wedge clustered randomized controlled trial. Circulation, 2016, 134(16): 1152-1162. |
87. | Serraino GF, Murphy GJ. Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: Updated systematic review and meta-analysis. Br J Anaesth, 2017, 118(6): 823-833. |
88. | Whiting P, Al M, Westwood M, et al. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: A systematic review and cost-effectiveness analysis. Health Technol Assess, 2015, 19(58): 1-228. |
89. | Deppe AC, Weber C, Zimmermann J, et al. Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: A meta-analysis of 8 332 patients. J Surg Res, 2016, 203(2): 424-433. |
90. | Redfern RE, Fleming K, March RL, et al. Thrombelastography-directed transfusion in cardiac surgery: Impact on postoperative outcomes. Ann Thorac Surg, 2019, 107(5): 1313-1318. |
91. | Curry NS, Davenport R, Pavord S, et al. The use of viscoelastic haemostatic assays in the management of major bleeding: A British Society for Haematology guideline. Br J Haematol, 2018, 182(6): 789-806. |
92. | Kozek-Langenecker SA, Afshari A, Albaladejo P, et al. Management of severe perioperative bleeding: Guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol, 2013, 30(6): 270-382. |
93. | Akhtar MI, Gautel L, Lomivorotov V, et al. Multicenter international survey on cardiopulmonary bypass perfusion practices in adult cardiac surgery. J Cardiothorac Vasc Anesth, 2021, 35(4): 1115-1124. |
94. | Mazer CD. Blood conservation in cardiac surgery: Guidelines and controversies. Transfus Apher Sci, 2014, 50(1): 20-25. |
95. | Ngaage DL, Bland JM. Lessons from aprotinin: Is the routine use and inconsistent dosing of tranexamic acid prudent? Meta-analysis of randomised and large matched observational studies. Eur J Cardiothorac Surg, 2010, 37(6): 1375-1383. |
96. | Zhou ZF, Zhai W, Yu LN, et al. Comparison of the in-vivo effect of two tranexamic acid doses on fibrinolysis parameters in adults undergoing valvular cardiac surgery with cardiopulmonary bypass—A pilot investigation. BMC Anesthesiol, 2021, 21(1): 33. |
97. | Zufferey PJ, Lanoiselée J, Graouch B, et al. Exposure-response relationship of tranexamic acid in cardiac surgery. Anesthesiology, 2021, 134(2): 165-178. |
98. | Jiménez JJ, Iribarren JL, Brouard M, et al. Safety and effectiveness of two treatment regimes with tranexamic acid to minimize inflammatory response in elective cardiopulmonary bypass patients: A randomized double-blind, dose-dependent, phase Ⅳ clinical trial. J Cardiothorac Surg, 2011, 6: 138. |
99. | Broadwin M, Grant PE, Robich MP, et al. Comparison of intraoperative tranexamic acid and epsilon-aminocaproic acid in cardiopulmonary bypass patients. JTCVS Open, 2020, 3: 114-125. |
100. | Makhija N, Sarupria A, Kumar Choudhary S, et al. Comparison of epsilon aminocaproic acid and tranexamic acid in thoracic aortic surgery: Clinical efficacy and safety. J Cardiothorac Vasc Anesth, 2013, 27(6): 1201-1207. |
101. | Leff J, Rhee A, Nair S, et al. A randomized, double-blinded trial comparing the effectiveness of tranexamic acid and epsilon-aminocaproic acid in reducing bleeding and transfusion in cardiac surgery. Ann Card Anaesth, 2019, 22(3): 265-272. |
102. | Raphael J, Mazer CD, Subramani S, et al. Society of Cardiovascular Anesthesiologists clinical practice improvement advisory for management of perioperative bleeding and hemostasis in cardiac surgery patients. J Cardiothorac Vasc Anesth, 2019, 33(11): 2887-2899. |
103. | Zhou L, Liu X, Yan M, et al. Postoperative nadir hemoglobin and adverse outcomes in patients undergoing on-pump cardiac operation. Ann Thorac Surg, 2021, 112(3): 708-716. |
104. | Ranucci M, Castelvecchio S, Ditta A, et al. Transfusions during cardiopulmonary bypass: Better when triggered by venous oxygen saturation and oxygen extraction rate. Perfusion, 2011, 26: 327-333. |
105. | Wahba A, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardiothorac Surg, 2020, 57(2): 210-251. |
106. | Fletcher CM, Hinton JV, Xing Z, et al. Fresh frozen plasma transfusion after cardiac surgery. Perfusion, 2023, 12: 2676591231221715. |
107. | Hinton JV, Xing Z, Fletcher C, et al. Association of perioperative transfusion of fresh frozen plasma and outcomes after cardiac surgery. Acta Anaesthesiol Scand, 2024: 11. |
108. | Green L, Roberts N, Cooper J, et al. Prothrombin complex concentrate vs. fresh frozen plasma in adult patients undergoing heart surgery—A pilot randomised controlled trial (PROPHESY trial). Anaesthesia, 2021, 76(7): 892-901. |
109. | Viana P, Relvas JH, Persson M, et al. Prothrombin complex concentrate versus fresh frozen plasma in adult patients undergoing cardiac surgery: A systematic review and meta-analysis. Chest Surg, 2024, 57(1): 25-35. |
110. | Bolliger D, Görlinger K, Tanaka KA. Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiol, 2010, 113(5): 1205-1219. |
111. | Lee SH, Lee SM, Kim CS, et al. Fibrinogen recovery and changes in fibrin-based clot firmness after cryoprecipitate administration in patients undergoing aortic surgery involving deep hypothermic circulatory arrest. Transfusion, 2014, 54(5): 1379-1387. |
112. | Jeppsson A, Waldén K, Roman-Emanuel C, et al. Preoperative supplementation with fibrinogen concentrate in cardiac surgery: A randomized controlled study. Br J Anaesth, 2016, 116(2): 208-214. |
113. | Bilecen S, de Groot JA, Kalkman CJ, et al. Effect of fibrinogen concentrate on intraoperative blood loss among patients with intraoperative bleeding during high-risk cardiac surgery: A randomized clinical trial. JAMA, 2017, 317(7): 738-747. |
114. | Rahe-Meyer N, Levy JH, Mazer CD, et al. Randomized evaluation of fibrinogen vs placebo in complex cardiovascular surgery (REPLACE): A double-blind phase Ⅲ study of haemostatic therapy. Br J Anaesth, 2016, 117(1): 41-51. |
115. | Ayaganov D, Kuanyshbek A, Vakhrushev I, et al. Prospective, randomized study of fibrinogen concentrate versus cryoprecipitate for correcting hypofibrinogenemia in cardiac surgery patients. J Cardiothorac Vasc Anesth, 2024, 38(1): 80-85. |
116. | Bartoszko J, Martinez-Perez S, Callum J, et al. Impact of cardiopulmonary bypass duration on efficacy of fibrinogen replacement with cryoprecipitate compared with fibrinogen concentrate: A post hoc analysis of the Fibrinogen Replenishment in Surgery (FIBRES) randomised controlled trial. Br J Anaesth, 2022, 129(3): 294-307. |
117. | Wikkelsø A, Lunde J, Johansen M, et al. Fibrinogen concentrate in bleeding patients. Cochrane Database Syst Rev, 2013, 2013(8): CD008864. |
118. | Fletcher CM, Hinton JV, Xing Z, et al. Platelet transfusion after cardiac surgery. J Cardiothorac Vasc Anesth, 2023, 37(4): 528-538. |
119. | Fletcher CM, Hinton JV, Xing Z, et al. Platelet transfusion in cardiac surgery: An entropy-balanced, weighted, multicenter analysis. Anesth Analg, 2024, 138(3): 542-551. |
120. | Blath L, Martens J, Rahe-Meyer N. Efficacy of platelet transfusion in cardiac surgery. Platelets, 2022, 33(7): 987-997. |
121. | Paparella D, Whitlock R. Safety of salvaged blood and risk of coagulopathy in cardiac surgery. Sem Throm Hem, 2016, 42(2): 166-171. |
122. | Murphy GJ, Allen SM, Unsworth-White J, et al. Safety and efficacy of perioperative cell salvage and autotransfusion after coronary artery bypass grafting: A randomized trial. Ann Thorac Surg, 2004, 77(5): 1553-1559. |
123. | Niranjan G, Asimakopoulos G, Karagounis A, et al. Effects of cell saver autologous blood transfusion on blood loss and homologous blood transfusion requirements in patients undergoing cardiac surgery on- versus off-cardiopulmonary bypass: A randomised trial. Eur J Cardiothorac Surg, 2006, 30(2): 271-277. |
124. | Côté CL, Yip AM, MacLeod JB, et al. Efficacy of intraoperative cell salvage in decreasing perioperative blood transfusion rates in first-time cardiac surgery patients: A retrospective study. Can J Surg, 2016, 59(5): 330-336. |
125. | Wang G, Bainbridge D, Martin J, et al. The efficacy of an intraoperative cell saver during cardiac surgery: A meta-analysis of randomized trials. Anesth Analg, 2009, 109(2): 320-330. |
126. | van der Wal MT, Boks RH, Wijers-Hille MJ, et al. The effect of pre-operative blood withdrawal, with or without sequestration, on allogeneic blood product requirements. Perfusion, 2015, 30(8): 643-649. |
127. | Triulzi DJ, Gilmor GD, Ness PM, et al. Efficacy of autologous fresh whole blood or platelet-rich plasma in adult cardiac surgery. Transfusion, 1995, 35(8): 627-634. |
128. | Duan L, Wang E, Hu GH, et al. Preoperative autologous platelet pheresis reduces allogeneic platelet use and improves the postoperative PaO2/FiO2 ratio in complex aortic surgery: A retrospective analysis. Interact Cardiovasc Thorac Surg, 2020, 31(6): 820-826. |
129. | Zhou SF, Estrera AL, Loubser P, et al. Autologous platelet-rich plasma reduces transfusions during ascending aortic arch repair: A prospective, randomized, controlled trial. Ann Thorac Surg, 2015, 99(4): 1282-1290. |
130. | Zhou SF, Estrera AL, Miller CC 3rd, et al. Analysis of autologous platelet-rich plasma during ascending and transverse aortic arch surgery. Ann Thorac Surg, 2013, 95(5): 1525-1530. |
131. | Zhai Q, Wang Y, Yuan Z, et al. Effects of platelet-rich plasmapheresis during cardiovascular surgery: A meta-analysis of randomized controlled clinical trials. J Clin Anesth, 2019, 56: 88-97. |
132. | Barile L, Fominskiy E, Di Tomasso N, et al. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: A systematic review and meta-analysis of randomized trials. Anesth Analg, 2017, 124(3): 743-752. |
133. | Li S, Liu Y, Zhu Y. Effect of acute normovolemic hemodilution on coronary artery bypass grafting: A systematic review and meta-analysis of 22 randomized trials. Int J Surg, 2020, 83: 131-139. |
134. | Ming Y, Zhang F, Yao Y, et al. Large volume acute normovolemic hemodilution in patients undergoing cardiac surgery with intermediate-high risk of transfusion: A randomized controlled trial. J Clin Anesth, 2023, 87: 111082. |
135. | Goldberg J, Paugh TA, Dickinson TA, et al. Greater volume of acute normovolemic hemodilution may aid in reducing blood transfusions after cardiac surgery. Ann Thorac Surg, 2015, 100(5): 1581-1587. |
136. | Shander A, Brown J, Licker M, et al. Standards and best practice for acute normovolemic hemodilution: Evidence-based consensus recommendations. J Cardiothorac Vasc Anesth, 2020, 34(7): 1755-1760. |
137. | Iyer YL, Hayward P, McNicol L, et al. The effects on coagulation of the reinfusion of unprocessed residual blood from the cardiopulmonary bypass. BMC Res Notes, 2016, 9: 61. |
138. | Eichert I, Isgro F, Kiessling AH, et al. Cell saver, ultrafiltration and direct transfusion: comparative study of three blood processing techniques. Thorac Cardiovasc Surg, 2001, 49: 149-152. |
139. | Daane CR, Golab HD, Meeder JH, et al. Processing and transfusion of residual cardiopulmonary bypass volume: Effects on haemostasis, complement activation, postoperative blood loss and transfusion volume. Perfusion, 2003, 18(2): 115-121. |
140. | Campbell J, Holland C, Richens D, et al. Impact of cell salvage during cardiac surgery on the thrombelastomeric coagulation profile: A pilot study. Perfusion, 2012, 27(3): 221-224. |
141. | Whitlock R, Mathew J, Eikelboom J, et al. Processed residual pump blood in cardiac surgery: The processed resid- ual blood in cardiac surgery trial. Transfusion, 2013, 53: 1487-1492. |
142. | Yan S, Zhao Y, Lou S. Ultrafiltration and reinfusion of residual cardiopulmonary bypass pump blood: A prospective non-randomized controlled study. Artif Organs, 2019, 43(7): 641-646. |
- 1. 国家心血管病医疗质量控制中心, 国家心血管病专家委员会. 2022年国家医疗服务与质量安全报告. 心血管病专业分册. 北京: 中国协和医科大学出版社, 2023: 2.National Center for Cardiovascular Quality Improvement, National Expert Commission for Cardiovascular Diseases. 2022 Report on National Medical Service and Quality Safety: Cardiovascular Disease Specialty Volume. Peking Union Medical College Press. 2023: 2.
- 2. 吉冰洋. 体外循环医师在心血管手术血液管理中的重要角色. 中国体外循环杂志, 2022, 20(1): 1-2.Ji BY. The key role of perfusionists in patient blood management in cardiovascular surgery. Chin J ECC, 2022, 20(1): 1-2.
- 3. Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Ferraris SP, et al. Perioperative blood transfusion and blood conservation in cardiac surgery: The Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg, 2007, 83(5 Suppl): S27-S86.
- 4. Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Brown JR, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg, 2011, 91(3): 944-982.
- 5. Tibi P, McClure RS, Huang J, et al. STS/SCA/AmSECT/SABM update to the clinical practice guidelines on patient blood management. Ann Thorac Surg, 2021, 112(3): 981-1004.
- 6. Task Force on Patient Blood Management for Adult Cardiac Surgery of the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Cardiothoracic Anaesthesiology (EACTA), Boer C, Meesters MI, et al. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. J Cardiothorac Vasc Anesth, 2018, 32(1): 88-120.
- 7. 胡盛寿, 纪宏文, 孙寒松, 等. 心血管手术患者血液管理专家共识. 中国输血杂志, 2018, 31(4): 321-325.Hu SS, Ji HW, Sun HS, et al. Chinese experts consensus statement on patient blood management in patients undergoing cardiovascular surgery. Chin J Blood Transfusion, 2018, 31(4): 321-325.
- 8. Mazer CD, Whitlock RP, Fergusson DA, et al. Restrictive or liberal redcell transfusion for cardiac surgery. N Engl J Med, 2017, 377: 2133-2144.
- 9. Mazer CD, Whitlock RP, Fergusson DA, et al. Six-month outcomes after restrictive or liberal transfusion for cardiac surgery. N Engl J Med, 2018, 379(13): 1224-1233.
- 10. Shi J, Zhou C, Pan W, et al. Effect of high- vs low-dose tranexamic acid infusion on need for red blood cell transfusion and adverse events in patients undergoing cardiac surgery: The OPTIMAL randomized clinical trial. JAMA, 2022, 328(4): 336-347.
- 11. Carson JL, Stanworth SJ, Guyatt G, et al. Red blood cell transfusion: 2023 AABB international guidelines. JAMA, 2023, 330(19): 1892-1902.
- 12. 闫姝洁, 章晓华, 侯晓彤, 等. 全国体外循环血液管理问卷调查研究. 中国体外循环杂志, 2022, 20(5): 261-266.Yan SJ, Zhang XH, Hou XT, et al. Questionaire survey on cardiopulmonary bypass blood management in China. Chin J ECC, 2022, 20(5): 261-266.
- 13. World Health Organization. WHO handbook for guideline development, 2nd ed (2014). URL: https://apps.who.int/iris/handle/10665/145714. Accessed on 2022-06-20.
- 14. 陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则(2022). 中华医学杂志, 2022, 102(10): 697-703.Chen YL, Yang KH, Wang XQ, et al. Principles for developing/revising clinical diagnosis and treatment guidelines in China (2022). Nat Med J Chin, 2022, 102(10): 697-703.
- 15. Guyatt GH, Thorlund K, Oxman AD, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol, 2013, 66(2): 173-183.
- 16. Sun BC, Dickinson TA, Tesdahl EA, et al. The unintended consequences of over-reducing cardiopulmonary bypass circuit prime volume. Ann Thorac Surg, 2017, 103(6): 1842-1848.
- 17. Dickinson TA, Wu X, Sturmer DL, et al. Net prime volume is associated with increased odds of blood transfusion. J Extra Corpor Technol, 2019, 51(4): 195-200.
- 18. Berretta P, Cefarelli M, Montecchiani L, et al. Minimally invasive versus standard extracorporeal circulation system in minimally invasive aortic valve surgery: A propensity score-matched study. Eur J Cardiothorac Surg, 2020, 57(4): 717-723.
- 19. Gao S, Li Y, Diao X, et al. Vacuum-assisted venous drainage in adult cardiac surgery: A propensity-matched study. Interact Cardiovasc Thorac Surg, 2020, 30(2): 236-242.
- 20. 刘刚, 曾庆东, 郑哲, 等. 迷你化心肺转流和传统心肺转流的临床应用比较. 中华外科杂志, 2016, 54(8): 613-616.Liu G, Zeng QD, Zheng Z, et al. Clinical application of modified minimally cardiopulmonary bypass: compared with conventional cardiopulmonary bypass. Chin J Surg, 2016, 54(8): 613-616.
- 21. Zhang Q, Zhao W, Gao S, et al. Quality management of a comprehensive blood conservation program during cardiopulmonary bypass. Ann Thorac Surg, 2022, 114(1): 142-150.
- 22. 刘侠丽, 谭赵霞, 秦臻, 等. 华西综合血液管理策略减少体外循环患者异体血需要. 中国体外循环杂志, 2022, 20(4): 200-206, 225.Liu XL, Tan ZX, Qin Z, et al. Huaxi integrated blood management reduces the requirements of allogenic blood for patients undergoing cardiopulmonary bypass. Chin J ECC, 2022, 20(4): 200-206, 225.
- 23. 孟擎擎, 徐建军, 周成斌, 等. 改装密闭式体外循环套包在复杂先天性心脏病手术中的应用. 中国体外循环杂志, 2014, 12(4): 234-236, 244.Meng QQ, Xu JJ, Zhou CB, et al. Application of modified closed extracorporeal circulation circuis in the complex congenital heart disease. Chin J ECC, 2014, 12(4): 234-236, 244.
- 24. 刘小清, 陈寄梅, 周成斌, 等. 微小化管道技术对新生儿先天性心脏病围术期病死率的影响. 中华胸心血管外科杂志, 2018, 34(11): 6.Liu XQ, Chen JM, Zhou CB, et al. Effect of minimized cardiopulmonary bypass circuit on perioperative mortality in neonates with congenital heart disease. Chin J Thorac Cardiovasc Surg, 2018, 34(11): 6.
- 25. Hou X, Yang F, Liu R, et al. Retrograde autologous priming of the cardiopulmonary bypass circuit reduces blood transfusion in small adults: A prospective, randomized trial. Eur J Anaesthesiol, 2009, 26(12): 1061-1066.
- 26. Gupta S, McEwen C, Basha A, et al. Retrograde autologous priming in cardiac surgery: A systematic review and meta-analysis. Eur J Cardiothorac Surg, 2021, 60(6): 1245-1256.
- 27. Miles LF, Coulson TG, Galhardo C, et al. Pump priming practices and anticoagulation in cardiac surgery: Results from the global cardiopulmonary bypass survey. Anesth Analg, 2017, 125(6): 1871-1877.
- 28. Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg, 2012, 255: 821-829.
- 29. Bampoe S, Odor PM, Dushianthan A, et al. Perioperative administration of buffered versus non-buffered crystalloid intravenous fluid to improve outcomes following adult surgical procedures. Cochrane Database Syst Rev, 2017, 9(9): CD004089.
- 30. Beukers AM, de Ruijter JAC, Loer SA, et al. Effects of crystalloid and colloid priming strategies for cardiopulmonary bypass on colloid oncotic pressure and haemostasis: A meta-analysis. Interact Cardiovasc Thorac Surg, 2022, 35(3): ivac127.
- 31. Xian-Yu CY, Xu JB, Ma YT, et al. Management of priming fluids in cardiopulmonary bypass for adult cardiac surgery: Network meta-analysis. Ann Med, 2023, 55(2): 2246996.
- 32. Wang T, Wang J, Zhang M, et al. Effects of albumin and crystalloid priming strategies on red blood cell transfusions in on-pump cardiac surgery: A network meta-analysis. BMC Anesthesiol, 2024, 24(1): 26.
- 33. Yin J, Sun M, Zeng Y, et al. Safety and efficacy of albumin for pump priming in cardiac surgery: A meta-analysis. J Cardiothorac Vasc Anesth, 2024, 38(2): 517-525.
- 34. Wei L, Li D, Sun L. The comparison of albumin and 6% hydroxyethyl starches (130/0.4) in cardiac surgery: A meta-analysis of randomized controlled clinical trials. BMC Surg, 2021, 21(1): 342.
- 35. Skubas NJ, Callum J, Bathla A, et al. Intravenous albumin in cardiac and vascular surgery: A systematic review and meta-analysis. Br J Anaesth, 2024, 132(2): 237-250.
- 36. Finfer S, Bellomo R, Boyce N, et al. SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med, 2004, 350: 2247-2256.
- 37. Caironi P, Tognoni G, Masson S, et al. ALBIOS study investigators. N Engl J Med, 2014, 370: 1412-1421.
- 38. Aldecoa C, Llau JV, Nuvials X, et al. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: A review. Ann Intensive Care, 2020, 10(1): 85.
- 39. Pesonen E, Vlasov H, Suojaranta R, et al. Effect of 4% albumin solution vs ringer acetate on major adverse events in patients undergoing cardiac surgery with cardiopulmonary bypass: A randomized clinical trial. JAMA, 2022, 328(3): 251-258.
- 40. Talvasto A, Ilmakunnas M, Raivio P, et al. Albumin infusion and blood loss after cardiac surgery. Ann Thorac Surg, 2023, 116(2): 392-399.
- 41. Berbel-Franco D, Lopez-Delgado JC, Putzu A, et al. The influence of postoperative albumin levels on the outcome of cardiac surgery. J Cardiothorac Surg, 2020, 15(1): 78.
- 42. Padkins M, Breen T, Anavekar N, et al. Association between albumin level and mortality among cardiac intensive care unit patients. J Intensive Care Med, 2021, 36(12): 1475-1482.
- 43. Navickis RJ, Haynes GR, Wilkes MM. Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: A meta-analysis of randomized trials. J Thorac Cardiovasc Surg, 2012, 144(1): 223-230.
- 44. Sheikhi B, Rezaei Y, Baghaei Vaji F, et al. Comparison of six percent hydroxyethyl starch 130/0.4 and ringer's lactate as priming solutions in patients undergoing isolated open heart valve surgery: A double-blind randomized controlled trial. Perfusion, 2023, Online ahead of print.
- 45. Skhirtladze K, Base EM, Lassnigg A, et al. Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.46%, and Ringer's lactate on blood loss and coagulation after cardiac surgery. Br J Anaesth, 2014, 112(2): 255-264.
- 46. Lagny MG, Roediger L, Koch JN, et al. Hydroxyethyl starch 130/0.4 and the risk of acute kidney injury after cardiopulmonary bypass: A single-center retrospective study. J Cardiothorac Vasc Anesth, 2016, 30(4): 869-875.
- 47. Hans GA, Ledoux D, Roediger L, et al. The effect of intraoperative 6% balanced hydroxyethyl starch (130/0. 4) during cardiac surgery on transfusion requirements. J Cardiothorac Vasc Anesth, 2015, 29(2): 328-332.
- 48. 关于修订羟乙基淀粉类注射剂说明书的公告. URL: https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypshmshxdgg/20220906104548135.html. Accessed on 2024-06-21.Announcement on the Revision of the Instructions for Hydroxyethyl Starch Products by CFDA. URL: https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypshmshxdgg/20220906104548135.html. Accessed on 2024-06-21.
- 49. U. S. Food and Drug Administration. Labeling changes on mortality, kidney injury, and excess bleeding with hydroxyethyl starch products. URL: https://www. fda. gov/vaccines-blood-biologics/safety-availability-biologics/labeling-changes-mortality-kidney-injury-and-excess-bleeding-hydroxyethyl-starch-products?_refluxos=a10. Accessed on 2023-12-04.
- 50. Ghijselings I, Himpe D, Rex S. Safety of gelatin solutions for the priming of cardiopulmonary bypass in cardiac surgery: A systematic review and meta-analysis. Perfusion, 2017, 32(5): 350-362.
- 51. Ford SA, Kam PC, Baldo BA, et al. Anaphylactic or anaphylactoid reactions in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth, 2001, 15(6): 684-688.
- 52. Boodhwani M, Williams K, Babaev A, et al. Ultrafiltration reduces blood transfusions following cardiac surgery: A meta-analysis. Eur J Cardiothorac Surg, 2006, 30(6): 892-897.
- 53. Hensley NB, Colao JA, Zorrilla-Vaca A, et al. Ultrafiltration in cardiac surgery: Results of a systematic review and meta-analysis. Perfusion, 2024, 39(4): 743-751.
- 54. Luciani GB, Menon T, Vecchi B, et al. Modified ultrafiltration reduces morbidity after adult cardiac operations: A prospective, randomized clinical trial. Circulation, 2001, 104: I253-I259.
- 55. Paugh TA, Dickinson TA, Martin JR, et al. Impact of ultrafiltration on kidney injury after cardiac surgery: The Michigan experience. Ann Thorac Surg, 2015, 100: 1683-1688.
- 56. Mongero L, Stammers A, Tesdahl E, et al. The effect of ultrafiltration on end-cardiopulmonary bypass hematocrit during cardiac surgery. Perfusion, 2018, 33(5): 367-374.
- 57. Low ZK, Gao F, Sin KYK, et al. Modified ultrafiltration reduces postoperative blood loss and transfusions in adult cardiac surgery: A meta-analysis of randomized controlled trials. Interact CardioVasc Thorac Surg, 2021, 32: 671-682.
- 58. Manning MW, Li YJ, Linder D, et al. Conventional ultrafiltration during elective cardiac surgery and postoperative acute kidney injury. J Cardiothorac Vasc Anesth, 2021, 35(5): 1310-1318.
- 59. Gerami H, Sajedianfard J, Ghasemzadeh B, et al. Is ultrafiltration volume a predictor of postoperative acute kidney injury in patients undergoing cardiopulmonary bypass? Perfusion, 2024, Published online ahead.
- 60. Tanaka KA, Levy JH. Regulation of thrombin activity—Pharmacologic and structural aspects. Hematol/Oncol Clin North America, 2007, 21(1): 33-50.
- 61. Levy JH, Sniecinski RM, Maier CL, et al. Finding a common definition of heparin resistance in adult cardiac surgery: Communication from the ISTH SSC subcommittee on perioperative and critical care thrombosis and hemostasis. J Thromb Haemost, 2024, 22(4): 1249-1257.
- 62. Beattie GW, Jeffrey RR. Is there evidence that fresh frozen plasma is superior to antithrombin administration to treat heparin resistance in cardiac surgery? Interact Cardiovasc Thorac Surg, 2014, 18(1): 117-120.
- 63. Ranucci M, Baryshnikova E, Crapelli GB, et al. Preoperative antithrombin supplementation in cardiac surgery: A randomized controlled trial. J Thorac Cardiovasc Surg, 2013, 145(5): 1393-1399.
- 64. Levy JH, Sniecinski RM, Welsby IJ, et al. Antithrombin: Anti-inflammatory properties and clinical applications. Thromb Haemost, 2016, 115(4): 712-728.
- 65. Sniecinski RM, Bennett-Guerrero E, Shore-Lesserson L. Anticoagulation management and heparin resistance during cardiopulmonary bypass: A survey of Society of Cardiovascular Anesthesiologists members. Anesth Analg, 2019, 129(2): e41-e44.
- 66. Shore-Lesserson L, Baker RA, Ferraris VA, et al. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of ExtraCorporeal Technology: Clinical practice guidelines-anticoagulation during cardiopulmonary bypass. Anesth Analg, 2018, 126(2): 413-424.
- 67. Koster A, Börgermann J, Gummert J, et al. Protamine overdose and its impact on coagulation, bleeding, and transfusions after cardiopulmonary bypass: Results of a randomized double-blind controlled pilot study. Clin Appl Thromb Hemost, 2014, 20(3): 290-295.
- 68. Wang J, Ma HP, Zheng H. Blood loss after cardiopulmonary bypass, standard vs titrated protamine: A meta-analysis. Neth J Med, 2013, 71: 123-127.
- 69. 唐佳丽, 秦臻, 杜磊. 滴定法预测肝素-鱼精蛋白量减少体外循环术后出血. 中国胸心血管外科临床杂志, 2013, 20(6): 723-724.Tang JL, Qin Z, Du L. Titration method for protamine dosage reduces postoperative bleeding after cardiopulmonary bypass. Chin J Clin Thorac Cardiovasc Surg, 2013, 20(6): 723-724.
- 70. Guo Y, Tang J, Du L, et al. Protamine dosage based on two titrations reduces blood loss after valve replacement surgery: A prospective, double-blinded, randomized study. Can J Cardiol, 2012, 28(5): 547-552.
- 71. Suarez Cuenca J, Gayoso Diz P, Gude Sampedro F, et al. Method to calculate the protamine dose necessary for reversal of heparin as a function of activated clotting time in patients undergoing cardiac surgery. J Extra Corpor Technol, 2013, 45: 235-241.
- 72. Hallgren O, Svenmarker S, Appelblad M. Implementing a statistical model for protamine titration: Effects on coagulation in cardiac surgical patient. J Cardiothorac Vasc Anesth, 2017, 31: 516-521.
- 73. MeestersMI, VeerhoekD, de Jong JR, et al. A pharmacokinetic model for protamine dosing after cardiopulmonary bypass. J Cardiothorac Vasc Anesth, 2016, 30: 1190-1195.
- 74. Raner G, Hu Y, Trowbridge C, et al. Comparison of blood concentration and weight-based heparin and protamine dosing strategies for cardiopulmonary bypass: A systematic review and meta-analysis. Cureus, 2024, 16(2): e54144.
- 75. Hecht P, Besser M, Falter F. Are we able to dose protamine accurately yet? A review of the protamine conundrum. J Extra Corpor Technol, 2020, 52(1): 63-70.
- 76. Martin P, Horkay F, Gupta NK, et al. Heparin rebound phenomenon--much ado about nothing? Blood Coagul Fibrinolysis, 1992, 3(2): 187-191.
- 77. Teoh KH, Young E, Blackall MH, et al. Can extra protamine eliminate heparin rebound following cardiopulmonary bypass surgery? J Thorac Cardiovasc Surg, 2004, 128(2): 211-219.
- 78. 中国体外循环专业技术标准(2021版). 中国体外循环杂志, 2021, 19(2): 67-72.Technology standards of extracorporeal circulation in China (2021). Chin J ECC, 2021, 19(2): 67-72.
- 79. Olsson P, Lagergren H, Ek S. The elimination from plasma of intravenous heparin. An experimental study on dogs and humans. Acta Med Scand, 1963, 173: 619-630.
- 80. Li H, Serrick C, Rao V, et al. A comparative analysis of four activated clotting time measurement devices in cardiac surgery with cardiopulmonary bypass. Perfusion, 2021, 36(6): 610-619.
- 81. Solís Clavijo D, Cotano AO, Peña NA, et al. Variability of three activated clotting time point-of-care systems in cardiac surgery: Reinforcing available evidence. Perfusion, 2022, 37(7): 711-714.
- 82. Othman M, Kaur H. Thromboelastography (TEG). Methods Mol Biol, 2017, 1646: 533-543.
- 83. Schmidt AE, Israel AK, Refaai MA. The utility of thromboelastography to guide blood product transfusion. Am J Clin Pathol, 2019, 152(4): 407-422.
- 84. Venema LF, Post WJ, Hendriks HG, et al. An assessment of clinical interchangeability of TEG and RoTEM thromboelastographic variables in cardiac surgical patients. Anesth Analg, 2010, 111(2): 339-344.
- 85. Tanaka KA, Bolliger D, Vadlamudi R, et al. Rotational thromboelastometry (ROTEM)-based coagulation management in cardiac surgery and major trauma. J Cardiothorac Vasc Anesth, 2012, 26(6): 1083-1093.
- 86. Karkouti K, Callum J, Wijeysundera DN, et al. Point-of-care hemostatic testing in cardiac surgery: A stepped-wedge clustered randomized controlled trial. Circulation, 2016, 134(16): 1152-1162.
- 87. Serraino GF, Murphy GJ. Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: Updated systematic review and meta-analysis. Br J Anaesth, 2017, 118(6): 823-833.
- 88. Whiting P, Al M, Westwood M, et al. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: A systematic review and cost-effectiveness analysis. Health Technol Assess, 2015, 19(58): 1-228.
- 89. Deppe AC, Weber C, Zimmermann J, et al. Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: A meta-analysis of 8 332 patients. J Surg Res, 2016, 203(2): 424-433.
- 90. Redfern RE, Fleming K, March RL, et al. Thrombelastography-directed transfusion in cardiac surgery: Impact on postoperative outcomes. Ann Thorac Surg, 2019, 107(5): 1313-1318.
- 91. Curry NS, Davenport R, Pavord S, et al. The use of viscoelastic haemostatic assays in the management of major bleeding: A British Society for Haematology guideline. Br J Haematol, 2018, 182(6): 789-806.
- 92. Kozek-Langenecker SA, Afshari A, Albaladejo P, et al. Management of severe perioperative bleeding: Guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol, 2013, 30(6): 270-382.
- 93. Akhtar MI, Gautel L, Lomivorotov V, et al. Multicenter international survey on cardiopulmonary bypass perfusion practices in adult cardiac surgery. J Cardiothorac Vasc Anesth, 2021, 35(4): 1115-1124.
- 94. Mazer CD. Blood conservation in cardiac surgery: Guidelines and controversies. Transfus Apher Sci, 2014, 50(1): 20-25.
- 95. Ngaage DL, Bland JM. Lessons from aprotinin: Is the routine use and inconsistent dosing of tranexamic acid prudent? Meta-analysis of randomised and large matched observational studies. Eur J Cardiothorac Surg, 2010, 37(6): 1375-1383.
- 96. Zhou ZF, Zhai W, Yu LN, et al. Comparison of the in-vivo effect of two tranexamic acid doses on fibrinolysis parameters in adults undergoing valvular cardiac surgery with cardiopulmonary bypass—A pilot investigation. BMC Anesthesiol, 2021, 21(1): 33.
- 97. Zufferey PJ, Lanoiselée J, Graouch B, et al. Exposure-response relationship of tranexamic acid in cardiac surgery. Anesthesiology, 2021, 134(2): 165-178.
- 98. Jiménez JJ, Iribarren JL, Brouard M, et al. Safety and effectiveness of two treatment regimes with tranexamic acid to minimize inflammatory response in elective cardiopulmonary bypass patients: A randomized double-blind, dose-dependent, phase Ⅳ clinical trial. J Cardiothorac Surg, 2011, 6: 138.
- 99. Broadwin M, Grant PE, Robich MP, et al. Comparison of intraoperative tranexamic acid and epsilon-aminocaproic acid in cardiopulmonary bypass patients. JTCVS Open, 2020, 3: 114-125.
- 100. Makhija N, Sarupria A, Kumar Choudhary S, et al. Comparison of epsilon aminocaproic acid and tranexamic acid in thoracic aortic surgery: Clinical efficacy and safety. J Cardiothorac Vasc Anesth, 2013, 27(6): 1201-1207.
- 101. Leff J, Rhee A, Nair S, et al. A randomized, double-blinded trial comparing the effectiveness of tranexamic acid and epsilon-aminocaproic acid in reducing bleeding and transfusion in cardiac surgery. Ann Card Anaesth, 2019, 22(3): 265-272.
- 102. Raphael J, Mazer CD, Subramani S, et al. Society of Cardiovascular Anesthesiologists clinical practice improvement advisory for management of perioperative bleeding and hemostasis in cardiac surgery patients. J Cardiothorac Vasc Anesth, 2019, 33(11): 2887-2899.
- 103. Zhou L, Liu X, Yan M, et al. Postoperative nadir hemoglobin and adverse outcomes in patients undergoing on-pump cardiac operation. Ann Thorac Surg, 2021, 112(3): 708-716.
- 104. Ranucci M, Castelvecchio S, Ditta A, et al. Transfusions during cardiopulmonary bypass: Better when triggered by venous oxygen saturation and oxygen extraction rate. Perfusion, 2011, 26: 327-333.
- 105. Wahba A, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardiothorac Surg, 2020, 57(2): 210-251.
- 106. Fletcher CM, Hinton JV, Xing Z, et al. Fresh frozen plasma transfusion after cardiac surgery. Perfusion, 2023, 12: 2676591231221715.
- 107. Hinton JV, Xing Z, Fletcher C, et al. Association of perioperative transfusion of fresh frozen plasma and outcomes after cardiac surgery. Acta Anaesthesiol Scand, 2024: 11.
- 108. Green L, Roberts N, Cooper J, et al. Prothrombin complex concentrate vs. fresh frozen plasma in adult patients undergoing heart surgery—A pilot randomised controlled trial (PROPHESY trial). Anaesthesia, 2021, 76(7): 892-901.
- 109. Viana P, Relvas JH, Persson M, et al. Prothrombin complex concentrate versus fresh frozen plasma in adult patients undergoing cardiac surgery: A systematic review and meta-analysis. Chest Surg, 2024, 57(1): 25-35.
- 110. Bolliger D, Görlinger K, Tanaka KA. Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiol, 2010, 113(5): 1205-1219.
- 111. Lee SH, Lee SM, Kim CS, et al. Fibrinogen recovery and changes in fibrin-based clot firmness after cryoprecipitate administration in patients undergoing aortic surgery involving deep hypothermic circulatory arrest. Transfusion, 2014, 54(5): 1379-1387.
- 112. Jeppsson A, Waldén K, Roman-Emanuel C, et al. Preoperative supplementation with fibrinogen concentrate in cardiac surgery: A randomized controlled study. Br J Anaesth, 2016, 116(2): 208-214.
- 113. Bilecen S, de Groot JA, Kalkman CJ, et al. Effect of fibrinogen concentrate on intraoperative blood loss among patients with intraoperative bleeding during high-risk cardiac surgery: A randomized clinical trial. JAMA, 2017, 317(7): 738-747.
- 114. Rahe-Meyer N, Levy JH, Mazer CD, et al. Randomized evaluation of fibrinogen vs placebo in complex cardiovascular surgery (REPLACE): A double-blind phase Ⅲ study of haemostatic therapy. Br J Anaesth, 2016, 117(1): 41-51.
- 115. Ayaganov D, Kuanyshbek A, Vakhrushev I, et al. Prospective, randomized study of fibrinogen concentrate versus cryoprecipitate for correcting hypofibrinogenemia in cardiac surgery patients. J Cardiothorac Vasc Anesth, 2024, 38(1): 80-85.
- 116. Bartoszko J, Martinez-Perez S, Callum J, et al. Impact of cardiopulmonary bypass duration on efficacy of fibrinogen replacement with cryoprecipitate compared with fibrinogen concentrate: A post hoc analysis of the Fibrinogen Replenishment in Surgery (FIBRES) randomised controlled trial. Br J Anaesth, 2022, 129(3): 294-307.
- 117. Wikkelsø A, Lunde J, Johansen M, et al. Fibrinogen concentrate in bleeding patients. Cochrane Database Syst Rev, 2013, 2013(8): CD008864.
- 118. Fletcher CM, Hinton JV, Xing Z, et al. Platelet transfusion after cardiac surgery. J Cardiothorac Vasc Anesth, 2023, 37(4): 528-538.
- 119. Fletcher CM, Hinton JV, Xing Z, et al. Platelet transfusion in cardiac surgery: An entropy-balanced, weighted, multicenter analysis. Anesth Analg, 2024, 138(3): 542-551.
- 120. Blath L, Martens J, Rahe-Meyer N. Efficacy of platelet transfusion in cardiac surgery. Platelets, 2022, 33(7): 987-997.
- 121. Paparella D, Whitlock R. Safety of salvaged blood and risk of coagulopathy in cardiac surgery. Sem Throm Hem, 2016, 42(2): 166-171.
- 122. Murphy GJ, Allen SM, Unsworth-White J, et al. Safety and efficacy of perioperative cell salvage and autotransfusion after coronary artery bypass grafting: A randomized trial. Ann Thorac Surg, 2004, 77(5): 1553-1559.
- 123. Niranjan G, Asimakopoulos G, Karagounis A, et al. Effects of cell saver autologous blood transfusion on blood loss and homologous blood transfusion requirements in patients undergoing cardiac surgery on- versus off-cardiopulmonary bypass: A randomised trial. Eur J Cardiothorac Surg, 2006, 30(2): 271-277.
- 124. Côté CL, Yip AM, MacLeod JB, et al. Efficacy of intraoperative cell salvage in decreasing perioperative blood transfusion rates in first-time cardiac surgery patients: A retrospective study. Can J Surg, 2016, 59(5): 330-336.
- 125. Wang G, Bainbridge D, Martin J, et al. The efficacy of an intraoperative cell saver during cardiac surgery: A meta-analysis of randomized trials. Anesth Analg, 2009, 109(2): 320-330.
- 126. van der Wal MT, Boks RH, Wijers-Hille MJ, et al. The effect of pre-operative blood withdrawal, with or without sequestration, on allogeneic blood product requirements. Perfusion, 2015, 30(8): 643-649.
- 127. Triulzi DJ, Gilmor GD, Ness PM, et al. Efficacy of autologous fresh whole blood or platelet-rich plasma in adult cardiac surgery. Transfusion, 1995, 35(8): 627-634.
- 128. Duan L, Wang E, Hu GH, et al. Preoperative autologous platelet pheresis reduces allogeneic platelet use and improves the postoperative PaO2/FiO2 ratio in complex aortic surgery: A retrospective analysis. Interact Cardiovasc Thorac Surg, 2020, 31(6): 820-826.
- 129. Zhou SF, Estrera AL, Loubser P, et al. Autologous platelet-rich plasma reduces transfusions during ascending aortic arch repair: A prospective, randomized, controlled trial. Ann Thorac Surg, 2015, 99(4): 1282-1290.
- 130. Zhou SF, Estrera AL, Miller CC 3rd, et al. Analysis of autologous platelet-rich plasma during ascending and transverse aortic arch surgery. Ann Thorac Surg, 2013, 95(5): 1525-1530.
- 131. Zhai Q, Wang Y, Yuan Z, et al. Effects of platelet-rich plasmapheresis during cardiovascular surgery: A meta-analysis of randomized controlled clinical trials. J Clin Anesth, 2019, 56: 88-97.
- 132. Barile L, Fominskiy E, Di Tomasso N, et al. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: A systematic review and meta-analysis of randomized trials. Anesth Analg, 2017, 124(3): 743-752.
- 133. Li S, Liu Y, Zhu Y. Effect of acute normovolemic hemodilution on coronary artery bypass grafting: A systematic review and meta-analysis of 22 randomized trials. Int J Surg, 2020, 83: 131-139.
- 134. Ming Y, Zhang F, Yao Y, et al. Large volume acute normovolemic hemodilution in patients undergoing cardiac surgery with intermediate-high risk of transfusion: A randomized controlled trial. J Clin Anesth, 2023, 87: 111082.
- 135. Goldberg J, Paugh TA, Dickinson TA, et al. Greater volume of acute normovolemic hemodilution may aid in reducing blood transfusions after cardiac surgery. Ann Thorac Surg, 2015, 100(5): 1581-1587.
- 136. Shander A, Brown J, Licker M, et al. Standards and best practice for acute normovolemic hemodilution: Evidence-based consensus recommendations. J Cardiothorac Vasc Anesth, 2020, 34(7): 1755-1760.
- 137. Iyer YL, Hayward P, McNicol L, et al. The effects on coagulation of the reinfusion of unprocessed residual blood from the cardiopulmonary bypass. BMC Res Notes, 2016, 9: 61.
- 138. Eichert I, Isgro F, Kiessling AH, et al. Cell saver, ultrafiltration and direct transfusion: comparative study of three blood processing techniques. Thorac Cardiovasc Surg, 2001, 49: 149-152.
- 139. Daane CR, Golab HD, Meeder JH, et al. Processing and transfusion of residual cardiopulmonary bypass volume: Effects on haemostasis, complement activation, postoperative blood loss and transfusion volume. Perfusion, 2003, 18(2): 115-121.
- 140. Campbell J, Holland C, Richens D, et al. Impact of cell salvage during cardiac surgery on the thrombelastomeric coagulation profile: A pilot study. Perfusion, 2012, 27(3): 221-224.
- 141. Whitlock R, Mathew J, Eikelboom J, et al. Processed residual pump blood in cardiac surgery: The processed resid- ual blood in cardiac surgery trial. Transfusion, 2013, 53: 1487-1492.
- 142. Yan S, Zhao Y, Lou S. Ultrafiltration and reinfusion of residual cardiopulmonary bypass pump blood: A prospective non-randomized controlled study. Artif Organs, 2019, 43(7): 641-646.