1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
2. |
Chakraborty S, Sharma G, Karmakar S, et al. Multi-OMICS approaches in cancer biology: New era in cancer therapy. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(5): 167120.
|
3. |
Wang J, Su H, Wang M, et al. Pyroptosis and the fight against lung cancer. Med Res Rev, 2025, 45(1): 5-28.
|
4. |
Fidelle M, Rauber C, Alves Costa Silva C, et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science, 2023, 380(6649): eabo2296.
|
5. |
Křížová L, Benešová I, Špaček J, et al. Fecal microbiota transplantation - New possibility to influence the results of therapy of cancer patients. Klin Onkol, 2022, 35(6): 436-440.
|
6. |
Li X, Shang S, Wu M, et al. Gut microbial metabolites in lung cancer development and immunotherapy: Novel insights into gut-lung axis. Cancer Lett, 2024, 598: 217096.
|
7. |
Li J, Shi B, Ren X, et al. Lung-intestinal axis, Shuangshen granules attenuate lung metastasis by regulating the intestinal microbiota and related metabolites. Phytomedicine, 2024, 132: 155831.
|
8. |
Bum Lee J, Huang Y, Oya Y, et al. Modulating the gut microbiome in non-small cell lung cancer: Challenges and opportunities. Lung Cancer, 2024, 194: 107862.
|
9. |
Vindigni SM, Surawicz CM. Fecal Microbiota Transplantation. Gastroenterol Clin North Am, 2017, 46(1): 171-185.
|
10. |
Duttagupta S, Hakozaki T, Routy B, et al. The gut Microbiome from a biomarker to a novel therapeutic strategy for immunotherapy response in patients with lung cancer. Curr Oncol, 2023, 30(11): 9406-9427.
|
11. |
Eiseman B, Silen W, Bascom GS, et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surg, 1958, 44(5): 854-859.
|
12. |
Schwan A, Sjölin S, Trottestam U, et al. Relapsing clostridium difficile enterocolitis cured by rectal infusion of homologous faeces. Lancet, 1983, 2(8354): 845.
|
13. |
Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc, 2019, 118 Suppl 1: S23-S31.
|
14. |
Chen D, Wu J, Jin D, et al. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer, 2019, 145(8): 2021-2031.
|
15. |
D T, Venkatesh MP. Fecal microbiota transplantation: History, procedure and regulatory considerations. Presse Med, 2023, 52(4): 104204.
|
16. |
Ooijevaar RE, Terveer EM, Verspaget HW, et al. Clinical application and potential of fecal microbiota transplantation. Annu Rev Med, 2019, 70: 335-351.
|
17. |
Zhao Y, Liu Y, Li S, et al. Role of lung and gut microbiota on lung cancer pathogenesis. J Cancer Res Clin Oncol, 2021, 147(8): 2177-2186.
|
18. |
Ma PJ, Wang MM, Wang Y. Gut microbiota: A new insight into lung diseases. Biomed Pharmacother, 2022, 155: 113810.
|
19. |
Gong R, Li H. The role of 418 gut microbiota in small cell lung cancer progression: A mendelian randomisation study. J Coll Physicians Surg Pak, 2025, 35(1): 60-65.
|
20. |
Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiota signature predicts the early-stage lung cancer. Gut Microbes, 2020, 11(4): 1030-1042.
|
21. |
Dong Q, Chen ES, Zhao C, et al. Host-microbiome interaction in lung cancer. Front Immunol, 2021, 12: 679829.
|
22. |
Li Y, Wang K, Zhang Y, et al. Revealing a causal relationship between gut microbiota and lung cancer: A mendelian randomization study. Front Cell Infect Microbiol, 2023, 13: 1200299.
|
23. |
Yu Y, Wang W, Zhang F. The next generation fecal microbiota transplantation: To transplant bacteria or virome. Adv Sci (Weinh), 2023, 10(35): e2301097.
|
24. |
Tamburini S, Clemente JC. Gut microbiota: Neonatal gut microbiota induces lung immunity against pneumonia. Nat Rev Gastroenterol Hepatol, 2017, 14(5): 263-264.
|
25. |
Guo J, Yang L. Regulation effect of the intestinal flora and intervention strategies targeting the intestinal flora in alleviation of pulmonary fibrosis development. Biosci Microbiota Food Health, 2024, 43(4): 293-299.
|
26. |
Bingula R, Filaire M, Radosevic-Robin, et al. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. J Oncol, 2017, 2017: 5035371.
|
27. |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol, 2017, 15(1): 55-63.
|
28. |
Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 2016, 45(4): 931-943.
|
29. |
Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet, 2014, 384(9944): 691-702.
|
30. |
Shang GS, Liu L, Qin YW. IL-6 and TNF-α promote metastasis of lung cancer by inducing epithelial-mesenchymal transition. Oncol Lett, 2017, 13(6): 4657-4660.
|
31. |
Tomita Y, Ikeda T, Sakata S, et al. Association of Probiotic Clostridium butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunol Res, 2020, 8(10): 1236-1242.
|
32. |
Liu B, Chau J, Dai Q, et al. Exploring gut microbiome in predicting the efficacy of immunotherapy in non-small cell lung cancer. Cancers (Basel), 2022, 14(21): 5401.
|
33. |
Vernocchi P, Gili T, Conte F, et al. Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. Int J Mol Sci, 2020, 21(22): 8730.
|
34. |
谢方美, 杨继元. 肠道微生物对肺癌免疫治疗的影响. 医学信息, 2024, 37(16): 184-188.Xie FM, Yang JY. The Impact of Gut Microbiota on Lung Cancer Immunotherapy. Med Inform, 2024, 37(16): 184-188.
|
35. |
彭素娟. 粪菌移植联合PD-1抑制剂和化疗治疗晚期非小细胞肺癌免疫继发性耐药的疗效与安全性分析. 南昌大学, 2024.Peng SJ. Efficacy and safety analysis of fecal microbiota transplantation combined with PD-1 Inhibitors and chemotherapy for immune secondary resistance in advanced non-small cell lung cancer. Nanchang University, 2024.
|
36. |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371): 97-103.
|
37. |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018, 359(6371): 91-97.
|
38. |
Song P, Yang D, Wang H, et al. Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac Cancer, 2020, 11(6): 1621-1632.
|
39. |
Jin Y, Dong H, Xia L, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in chinese patients with NSCLC. J Thorac Oncol, 2019, 14(8): 1378-1389.
|
40. |
Dubin K, Callahan MK, Ren B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun, 2016, 7: 10391.
|
41. |
Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol, 2017, 28(6): 1368-1379.
|
42. |
Yang Y, An Y, Dong Y, et al. Fecal microbiota transplantation: No longer cinderella in tumour immunotherapy. EBioMedicine, 2024, 100: 104967.
|
43. |
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, et al. Metabolism and Metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology, 2021, 160(2): 573-599.
|
44. |
Dahlgren D, Lennernäs H. Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation. Biomed Pharmacother, 2023, 162: 114644.
|
45. |
Hong JH, Woo IS. Metronomic chemotherapy as a potential partner of immune checkpoint inhibitors for metastatic colorectal cancer treatment. Cancer Lett, 2023, 565: 216236.
|
46. |
Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, et al. Molecular Mechanisms of chemoresistance induced by cisplatin in NSCLC cancer therapy. Int J Mol Sci, 2021, 22(16): 8885.
|
47. |
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 2013, 342(6161): 967-970.
|
48. |
Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity, 2016, 45(4): 931-943.
|
49. |
Gui QF, Lu HF, Zhang CX, et al. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res, 2015, 14(2): 5642-5651.
|
50. |
Tian Y, Li M, Song W, et al. Effects of probiotics on chemotherapy in patients with lung cancer. Oncol Lett, 2019, 17(3): 2836-2848.
|
51. |
Hsiao YP, Chen HL, Tsai JN, et al. Administration of lactobacillus reuteri combined with clostridium butyricum attenuates cisplatin-induced renal damage by gut microbiota reconstitution, increasing butyric acid production, and suppressing renal inflammation. Nutrients, 2021, 13(8): 2792.
|
52. |
Shen S, Lim G, You Z, et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci, 2017, 20(9): 1213-1216.
|
53. |
Ramakrishna C, Corleto J, Ruegger PM, et al. Dominant role of the gut microbiota in chemotherapy induced neuropathic pain. Sci Rep, 2019, 9(1): 20324.
|
54. |
Zhang Z, Liu X, Chen D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther, 2022, 7(1): 258.
|
55. |
Peng J, Yin X, Yun W, et al. Radiotherapy-induced tumor physical microenvironment remodeling to overcome immunotherapy resistance. Cancer Lett, 2023, 559: 216108.
|
56. |
Jin H, Yoo Y, Kim Y, et al. Radiation-induced lung fibrosis: preclinical animal models and therapeutic strategies. Cancers (Basel), 2020, 12(6): 1561.
|
57. |
Chen ZY, Xiao HW, Dong JL, et al. Gut microbiota-derived PGF2α fights against radiation-induced lung toxicity through the MAPK/NF-κB Pathway. Antioxidants (Basel), 2021, 11(1): 65.
|
58. |
Chen Z, Wang B, Dong J, et al. Gut microbiota-derived l-histidine/imidazole propionate axis fights against the radiation-induced cardiopulmonary injury. Int J Mol Sci, 2021, 22(21): 11436.
|
59. |
Zhang XZ, Chen MJ, Fan PM, et al. Prediction of the mechanism of sodium butyrate against radiation-induced lung injury in non-small cell lung cancer based on network pharmacology and molecular dynamic simulations and molecular dynamic simulations. Front Oncol, 2022, 12: 809772.
|
60. |
Lee YS, Kim TY, Kim Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe, 2018, 24(6): 833-846.
|
61. |
Tian T, Zhao Y, Yang Y, et al. The protective role of short-chain fatty acids acting as signal molecules in chemotherapy- or radiation-induced intestinal inflammation. Am J Cancer Res, 2020, 10(11): 3508-3531.
|