1. |
Iorio MV, Croce CM. microRNA involvement in human cancer[J]. Carcinogenesis, 2012, 33(6):1126-1133.
|
2. |
Yanaihara N, Harris CC. MicroRNA Involvement in Human Cancers[J]. Clin Chem, 2013, 59(12):1811-1812.
|
3. |
Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer[J]. Nat Rev Cancer, 2006, 6(4):259-269.
|
4. |
Wojcicka A, de la Chapelle A, Jazdzewski K. MicroRNA-related sequence variations in human cancers[J]. Hum Genet, 2014, 133(4):463-469.
|
5. |
彭伟, 杨韵, 刘韵霄, 等. microRNA在结直肠癌中的研究及应用进展[J].中国普外基础与临床杂志, 2013, 20(6):691-696.
|
6. |
姚汝铖, 郑军, 邢荣春.微小RNA在胰腺癌中的研究进展[J].中国普外基础与临床杂志, 2012, 19(8):911-915.
|
7. |
Hatziapostolou M, Polytarchou C, Iliopoulos D. miRNAs link metabolic reprogramming to oncogenesis[J]. Trends Endocrinol Metab, 2013, 24(7):361-373.
|
8. |
Chen B, Li H, Zeng X, et al. Roles of microRNA on cancer cell metabolism[J]. J Transl Med, 2012, 10:228.
|
9. |
Gao P, Sun L, He X, et al. MicroRNAs and the Warburg effect: new players in an old arena[J]. Cur Gene Ther, 2012, 12(4): 285-291.
|
10. |
Szablewski L. Expression of glucose transporters in cancers[J]. Biochim Biophys Acta, 2013, 1835(2):164-169.
|
11. |
Jóźwiak P, Lipińska A. The role of glucose transporter 1(GLUT1) in the diagnosis and therapy of tumors[J]. Postepy Hig Med Dosw (Online), 2012, 66:165-174.
|
12. |
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
|
13. |
Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters[J]. Curr Genomics, 2007, 8(2):113-128.
|
14. |
Fei X, Qi M, Wu B, et al. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression[J]. FEBS Lett, 2012, 586(4): 392-397.
|
15. |
Gregersen LH, Jacobsen A, Frankel LB, et al. MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells[J]. BMC Cancer, 2012, 12:232.
|
16. |
Sun Y, Zhao X, Zhou Y, et al. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect[J]. Oncol Rep, 2012, 28(4):1346-1352.
|
17. |
Kefas B, Comeau L, Erdle N, et al. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells[J]. Neuro Oncol, 2010, 12(11):1102-1112.
|
18. |
Kinoshita T, Nohata N, Yoshino H, et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma[J]. Int J Oncol, 2012, 40(1): 185-193.
|
19. |
Warburg O. On respiratory impairment in cancer cells[J]. Science, 1956, 124(3215):269-270.
|
20. |
Weinhouse S. On respiratory impairment in cancer cells[J]. Science, 1956, 124(3215):267-269.
|
21. |
Mayevsky A. Mitochondrial function and energy metabolism in cancer cells:past overview and future perspectives[J]. Mitochondrion, 2009, 9(3):165-179.
|
22. |
Burk D, Schade AL. On respiratory impairment in cancer cells[J]. Science, 1956, 124(3215):270-272.
|
23. |
Frezza C, Gottlieb E. Mitochondria in cancer:not just innocent bystanders[J]. Semin Cancer Biol, 2009, 19(1):4-11.
|
24. |
Rossignol R, Gilkerson R, Aggeler R, et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells[J]. Cancer Res, 2004, 64(3):985-993.
|
25. |
Eichner LJ, Perry MC, Dufour CR, et al. miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγtranscriptional pathway[J]. Cell Metab, 2010, 12(4):352-361.
|
26. |
Chan SY, Zhang YY, Hemann C, et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the ironsulfur cluster assembly proteins ISCU1/2[J]. Cell Metab, 2009, 10(4):273-284.
|
27. |
Favaro E, Ramachandran A, McCormick R, et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU[J]. PLoS One, 2010, 5(4):e10345.
|
28. |
Zha S, Ferdinandusse S, Hicks JL, et al. Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer[J]. Prostate, 2005, 63(4):316-323.
|
29. |
Lin Q, Gao Z, Alarcon RM, et al. A role of miR-27 in the regulation of adipogenesis[J]. FEBS J, 2009, 276(8):2348-2358.
|
30. |
Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J]. Science, 2010, 328(5985):1566-1569.
|
31. |
Gerin I, Clerbaux LA, Haumont O, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation[J]. J Biol Chem, 2010, 285(44):33652-33661.
|
32. |
Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism[J]. J Lipid Res, 2010, 51(6):1513-1523.
|
33. |
Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by prostate cells:a potential new diagnostic and therapeutic approach[J]. Anticancer Res, 2010, 30(2):369-374.
|
34. |
Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23 enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239):762-765.
|
35. |
Dang CV. Glutaminolysis:supplying carbon or nitrogen or both for cancer cells?[J]. Cell Cycle, 2010, 9(19):3884-3886.
|
36. |
Gatenby RA, Girlies RJ. Why do cancers have high aerobic glycolysis?[J]. Nat Rev Cancer, 2004, 4(11):891-899.
|