1. |
Wei N, Deng XW. COP9:a new genetic locus involved in light-regulated development and gene expression in arabidopsis. Plant Cell, 1992, 4(12):1507-1518.
|
2. |
Wei N, Chamovitz DA, Deng XW. Arabidopsis COP9 is a compo-nent of a novel signaling complex mediating light control of develo-pment. Cell, 1994, 78(1):117-124.
|
3. |
Lee MH, Zhao R, Phan L, et al. Roles of COP9 signalosome in cancer. Cell Cycle, 2011, 10(18):3057-3066.
|
4. |
Zhao R, Yeung SC, Chen J, et al. Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest, 2011, 121(3):851-865.
|
5. |
Choi HH, Gully C, Su CH, et al. COP9 signalosome subunit 6 stabilizes COP1, which functions as an E3 ubiquitin ligase for 14-3-3σ.Oncogene, 2011, 30(48):4791-4801.
|
6. |
Nezames CD, Deng XW. The COP9 signalosome:its regulation of cullin-based E3 ubiquitin ligases and role in photomorphogenesis. Plant Physiol, 2012, 160(1):38-46.
|
7. |
Wang W, Tang M, Zhang L, et al. Clinical implications of CSN6 protein expression and correlation with mutant-type P53 protein in breast cancer. Jpn J Clin Oncol, 2013, 43(12):1170-1176.
|
8. |
陈波, 金锋, 张磊, 等. CSN6对人乳腺癌细胞增殖的影响. 解剖科学进展, 2010, 16(3): 223-225.
|
9. |
Xue Y, Chen J, Choi HH, et al. HER2-Akt signaling in regulating COP9 signalsome subunit 6 and p53. Cell Cycle, 2012, 11(22):4181-4190.
|
10. |
Iyer SV, Iwakuma T. A novel link between the HER2-Akt and MDM2-p53 pathways via CSN6. Cell Cycle, 2012, 11(22):4112.
|
11. |
Pan Y, Zhang Q, Atsaves V, et al. Suppression of jab1/CSN5 induces radio-and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene, 2013, 32(22):2756-2766.
|
12. |
Birol M, Echalier A. Structure and function of MPN (Mpr1/Pad1 N-terminal) domain-containing proteins. Curr Protein Pept Sci, 2014, 15(5):504-517.
|
13. |
Sharon M, Mao H, Boeri Erba E, et al. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure, 2009, 17(1):31-40.
|
14. |
Kotiguda GG, Weinberg D, Dessau M, et al. The organization of a CSN5-containing subcomplex of the COP9 signalosome. J Biol Chem, 2012, 287(50):42031-42041.
|
15. |
Gusmaroli G, Figueroa P, Serino G, et al. Role of the MPN subunits in COP9 signalosome assembly and activity, and their regulatory interaction with arabidopsis cullin3-based E3 ligases. Plant Cell, 2007, 19(2):564-581.
|
16. |
Zhang H, Gao ZQ, Wang WJ, et al. The crystal structure of the MPN domain from the COP9 signalosome subunit CSN6. FEBS Lett, 2012, 586(8):1147-1153.
|
17. |
Pick E, Golan A, Zimbler JZ, et al. The minimal deneddylase core of the COP9 signalosome excludes the Csn6 MPN-domain. PLoS One, 2012, 7(8):e43980.
|
18. |
Echalier A, Pan Y, Birol M, et al. Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. Proc Natl Acad Sci U S A, 2013, 110(4):1273-1278.
|
19. |
Duan W, Gao L, Wu X, et al. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells. Exp Cell Res, 2006, 312(17):3370-3378.
|
20. |
Hetfeld BK, Peth A, Sun XM, et al. The COP9 signalosome-mediated deneddylation is stimulated by caspases during apoptosis. Apoptosis, 2008, 13(2):187-195.
|
21. |
Richardson KS, Zundel W. The emerging role of the COP9 signalosome in cancer. Mol Cancer Res, 2005, 3(12):645-653.
|
22. |
Mahalingam S, Ayyavoo V, Patel M, et al. HIV-1 Vpr interacts with a human 34-kDa mov34 homologue, a cellular factor linked to the G2/M phase transition of the mammalian cell cycle. Proc Natl Acad Sci U S A, 1998, 95(7):3419-3424.
|
23. |
Chen B, Zhao R, Su CH, et al. CDK inhibitor p57 (Kip2) is negatively regulated by COP9 signalosome subunit 6. Cell Cycle, 2012, 11(24):4633-4641.
|
24. |
Inuzuka H, Fukushima H, Shaik S, et al. Novel insights into the molecular mechanisms governing Mdm2 ubiquitination and destruction. Oncotarget, 2010, 1(7):685-690.
|
25. |
Lee MH, Lozano G. Regulation of the p53-MDM2 pathway by 14-3-3sigma and other proteins. Semin Cancer Biol, 2006, 16(3):225-234.
|
26. |
Yang H, Wen YY, Zhao R, et al. DNA damage-induced protein14-3-3 sigma inhibits protein kinase B/Akt activation and suppressesAkt-activated cancer. Cancer Res, 2006, 66(6):3096-3105.
|
27. |
Yang HY, Wen YY, Chen CH, et al. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol, 2003, 23(20):7096-7107.
|
28. |
Xu XY, Wang WQ, Zhang L, et al. Clinical implications of p57 KIP2 expression in breast cancer. Asian Pac J Cancer Prev, 2012, 13(10):5033-5036.
|
29. |
Lee MH, Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci, 2001, 58(12-13):1907-1922.
|
30. |
Zhao R, Yang HY, Shin J, et al. CDK inhibitor p57 (Kip2) is downregulated by Akt during HER2-mediated tumorigenicity. Cell Cycle, 2013, 12(6):935-943.
|
31. |
Chun Y, Lee M, Park B, et al. CSN5/JAB1 interacts with the centromeric components CENP-T and CENP-W and regulates their proteasome-mediated degradation. J Biol Chem, 2013, 288(38):27208-27219.
|
32. |
Zhang XC, Chen J, Su CH, et al. Roles for CSN5 in control of p53/MDM2 activities. J Cell Biochem, 2008, 103(4):1219-1230.
|
33. |
Pan Y, Wang M, Bu X, et al. Curcumin analogue T83 exhibits potent antitumor activity and induces radiosensitivity through inactivation of Jab1 in nasopharyngeal carcinoma. BMC Cancer, 2013, 13:323.
|
34. |
Xiao S, Li D, Zhu HQ, et al. RIG-G as a key mediator of the antiproliferative activity of interferon-related pathways through enhancing p21 and p27 proteins. Proc Natl Acad Sci U S A, 2006, 103(44):16448-16453.
|
35. |
Xu GP, Zhang ZL, Xiao S, et al. Rig-G negatively regulates SCF-E3 ligase activities by disrupting the assembly of COP9 signalosome complex. Biochem Biophys Res Commun, 2013, 432(3):425-430.
|
36. |
Wei S, Chu PC, Chuang HC, et al. Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent. PLoS One, 2012, 7(10):e47298.
|