1. |
Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin, 2011, 61(2):69-90.
|
2. |
Hashimoto K, Aoyagi K, Isobe T, et al. Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer, 2014, 17(1):97-106.
|
3. |
Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells, 2009, 27(5):1006-1020.
|
4. |
Lee HH, Seo KJ, An CH, et al. CD133 expression is correlated with chemoresistance and early recurrence of gastric cancer. J Surg Oncol, 2012, 106(8):999-1004.
|
5. |
蔡成, 俞继卫, 吴巨钢, 等. CD133通过上皮间质转化促进胃癌侵袭和转移的研究.中华胃肠外科杂志, 2013, 16(7):662-667.
|
6. |
Li X, Wu Z, Fu X, et al. Long noncoding RNAs:insights from biological features and functions to diseases. Med Res Rev, 2013, 33(3):517-553.
|
7. |
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291):1071-1076.
|
8. |
Kogo R, Shimamura T, Mimori K, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res, 2011, 71(20):6320-6326.
|
9. |
Kim K, Jutooru I, Chadalapaka G, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 2013, 32(13):1616-1625.
|
10. |
陆瑞祺, 吴巨钢, 周国才, 等.胃癌CD133阳性细胞的纯化及其生物学特性研究.中国普外基础与临床杂志, 2011, 18(12):1265-1270.
|
11. |
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997, 3(7):730-737.
|
12. |
Iacopino F, Angelucci C, Piacentini R, et al. Isolation of cancer stem cells from three human glioblastoma cell lines:characterization of two selected clones. PLoS One, 2014, 9(8):e105166.
|
13. |
Campos B, Herold-Mende CC. Insight into the complex regulation of CD133 in glioma. Int J Cancer, 2011, 128(3):501-510.
|
14. |
Ferrandina G, Petrillo M, Bonanno G. Targeting CD133 antigen in cancer. Expert Opin Ther Targets, 2009, 13(7):823-837.
|
15. |
Damdinsuren B, Nagano H, Kondo M, et al. TGF-beta1-induced cell growth arrest and partial differentiation is related to the suppression of Id1 in human hepatoma cells. Oncol Rep, 2006, 15(2):401-408.
|
16. |
Angelastro JM, Lamé MW. Overexpression of CD133 promotes drug resistance in C6 glioma cells. Mol Cancer Res, 2010, 8(8):1105-1115.
|
17. |
Han KS, Li N, Raven P, et al. Targeting integrin-linked kinase suppresses invasion and metastasis through downregulation of epithelial-to-mesenchymal transition in renal cell carcinoma. Mol Cancer Ther, 2015, 14(4):1024-1034.
|
18. |
Shen W, Pang H, Liu J, et al. Epithelial-mesenchymal transition contributes to docetaxel resistance in human non-small cell lung cancer. Oncol Res, 2014, 22(1):47-55.
|
19. |
Xu ZY, Yu QM, Du YA, et al. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci, 2013, 9(6):587-597.
|
20. |
Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J, 2012, 279(17):3159-3165.
|
21. |
Sun M, Xia R, Jin F, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol, 2014, 35(2):1065-1073.
|
22. |
Pádua Alves C, Fonseca AS, Muys BR, et al. Brief report:the lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells, 2013, 31(12):2827-2832.
|
23. |
Wu ZH, Wang XL, Tang HM, et al. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncol Rep, 2014, 32(1):395-402.
|
24. |
Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increaseschemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J, 2014, 281(7):1750-1758.
|
25. |
Wang G, Li Z, Zhao Q, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep, 2014, 31(4):1839-1845.
|