1. |
Li FY, Cheng NS, Mao H, et al. Significance of controlling chronic proliferative cholangitis in the treatment of hepatolithiasis. World J Surg, 2009, 33(10):2155-2160.
|
2. |
Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science, 2002, 295(5557):1009-1014.
|
3. |
Vacanti CA. History of tissue engineering and a glimpse into its future. Tissue Eng, 2006, 12(5):1137-1142.
|
4. |
Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346(6212):941-945.
|
5. |
Seifu DG, Purnama A, Mequanint K, et al. Small-diameter vascular tissue engineering. Nat Rev Cardiol, 2013, 10(7):410-421.
|
6. |
Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet, 2008, 372(9655):2023-2030.
|
7. |
Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367(9518):1241-1246.
|
8. |
Eisenstein M. Engineered tracheas, corneas and arteries enter clinical testing. Nat Biotechnol, 2014, 32(4):303-304.
|
9. |
Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater, 2009, 8(6):457-470.
|
10. |
Hughes JF, Lontz JF. Correction of biliary obstruction using a novel polytetraluoroethylent artificial bile duct. Del Mel J, 1964, 36(7):150-159.
|
11. |
Mendelowitz DS, Beal JM. Expanded polytetrafluoroethylene in reconstruction of the canine biliary system. Am J Surg, 1982, 143(2):221-224.
|
12. |
Gómez NA, Alvarez LR, Mite A, et al. Repair of bile duct injuries with Gore-Tex vascular grafts:experimental study in dogs. J Gastrointest Surg, 2002, 6(1):116-120.
|
13. |
Christensen M, Laursen HB, Rokkjaer M, et al. Reconstruction of the common bile duct by a vascular prosthetic graft:an experimental study in pigs. J Hepatobiliary Pancreat Surg, 2005, 12(3):231-234.
|
14. |
Amiranashvili ID, Kavtaradze MN, Berishvili ER. Hepaticocholedoch reconstruction by explants and autotransplants. Georgian Med News, 2005, 129:120-123.
|
15. |
Schanaider A, Pannain VL, Müller LC, et al. Expanded polytetrafluoroethylene in canine bile duct injury:a critical analysis. Acta Cir Bras, 2011, 26(4):247-252.
|
16. |
Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3):480-486.
|
17. |
Gómez NA, Zapatier JA, Vargas PE. Re:"Small intestinal submucosa as a bioscaffold for biliary tract regeneration". Surgery, 2004, 135(4):460.
|
18. |
Ong ES, Helton WS, Jho D, et al. SURGISIS-assisted surgical site control in the delayed repair of a complex bile duct injury after laparoscopic cholecystectomy. J Gastrointest Surg, 2006, 10(2):202-206.
|
19. |
Tao L, Li Q, Ren H, et al. Repair of extrahepatic bile duct defect using a collagen patch in a Swine model. Artif Organs, 2015, 39(4):352-360.
|
20. |
Miyazawa M, Torii T, Toshimitsu Y, et al. A tissue-engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant, 2005, 5(6):1541-1547.
|
21. |
Aikawa M, Miyazawa M, Okada K, et al. Development of a novel reflux-free bilioenteric anastomosis procedure by using a bioabsorbable polymer tube. J Hepatobiliary Pancreat Sci, 2010, 17(3):284-290.
|
22. |
Aikawa M, Miyazawa M, Okamoto K, et al. A novel treatment for bile duct injury with a tissue-engineered bioabsorbable polymer patch. Surgery, 2010, 147(4):575-580.
|
23. |
Aikawa M, Miyazawa M, Okamoto K, et al. An extrahepatic bile duct grafting using a bioabsorbable polymer tube. J Gastrointest Surg, 2012, 16(3):529-534.
|
24. |
Aikawa M, Miyazawa M, Okada K, et al. Regeneration of extrahepatic bile duct——possibility to clinical application by recognition of the regenerative process. J Smooth Muscle Res, 2007, 43(6):211-218.
|
25. |
Miyazawa M, Aikawa M, Okada K, et al. Regeneration of extrahepatic bile ducts by tissue engineering with a bioabsorbable polymer. J Artif Organs, 2012, 15(1):26-31.
|
26. |
Nau P, Liu J, Ellison EC, et al. Novel reconstruction of the extrahepatic biliary tree with a biosynthetic absorbable graft. HPB (Oxford), 2011, 13(8):573-578.
|
27. |
Nakashima S, Nakamura T, Han LH, et al. Experimental biliary reconstruction with an artificial bile duct using in situ tissue engineering technique. Inflamm Regen, 2007, 27(6):579-585.
|
28. |
Nakashima S, Nakamura T, Miyagawa K, et al. In situ tissue engineering of the bile duct using polypropylene mesh-collagen tubes. Int J Artif Organs, 2007, 30(1):75-85.
|
29. |
Pérez Alonso AJ, Del Olmo Rivas C, Romero IM, et al. Tissue-engineering repair of extrahepatic bile ducts. J Surg Res, 2013, 179 (1):18-21.
|
30. |
O'Hara SP, Tabibian JH, Splinter PL, et al. The dynamic biliary epithelia:molecules, pathways, and disease. J Hepatol, 2013, 58(3):575-582.
|
31. |
Bianco P, Robey PG. Stem cells in tissue engineering. Nature, 2001, 414(6859):118-21.
|
32. |
Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004, 40(6):1275-1284.
|
33. |
Jang YY, Collector MI, Baylin SB, et al. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol, 2004, 6(6):532-539.
|
34. |
Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 2005, 106(2):756-763.
|
35. |
Cardinale V, Wang Y, Carpino G, et al. The biliary tree-a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol, 2012, 9(4):231-240.
|
36. |
Cardinale V, Wang Y, Carpino G, et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology, 2011, 54(6):2159-2172.
|
37. |
Carpino G, Cardinale V, Onori P, et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts:an anatomical in situ study yielding evidence of maturational lineages. J Anat, 2012, 220(2):186-199.
|
38. |
Zhou J, Yang Y, Yin X, et al. The compatibility of swine BMDC-derived bile duct endothelial cells with a nanostructured electrospun PLGA material. Int J Artif Organs, 2013, 36(2):121-130.
|
39. |
Barralet JE, Wallace LL, Strain AJ. Tissue engineering of human biliary epithelial cells on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability. Tissue Eng, 2003, 9(5):1037-1045.
|
40. |
Ismail A, Ramsis R, Sherif A, et al. Use of human amniotic stem cells for common bile duct reconstruction:vascularized support of a free amnion graft. Med Sci Monit, 2009, 15(9):BR243-BR247.
|
41. |
Samira S, Goichberg P, Kalinkovich A, et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest, 2003, 112(2):160-169.
|
42. |
Jia Y, Yao H, Zhou J, et al. Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells:involvement of small G protein RhoA and C/EBPβ. J Cell Physiol, 2011, 226(11):2807-2816.
|
43. |
Zhang H, Jia X, Han F, et al. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials, 2013, 34(9):2202-2212.
|
44. |
Li Q, Tao L, Chen B, et al. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF. Biomaterials, 2012, 33(17):4298-4308.
|