1. |
Qin LX, Tang ZY. Hepatocellular carcinoma with obstructive jaun-dice:diagnosis, treatment and prognosis. World J Gastroenterol, 2003, 9(3):385-391.
|
2. |
Iskander I, Gamaleldin R, El Houchi S, et al. Serum bilirubin and bilirubin/albumin ratio as predictors of bilirubin encephalopathy. Pediatrics, 2014, 134(5):e1330-e1339.
|
3. |
Diamond I, Schmid R. The pathogenesis of bilirubin encephalopathy:experimental models in newborn and adult animals. Trans Am Neurol Assoc, 1965, 90:38-41.
|
4. |
Song S, Hu Y, Gu X, et al. A novel newborn rat kernicterus model created by injecting a bilirubin solution into the cisterna magna. PLoS One, 2014, 9(5):e96171.
|
5. |
Gao X, Yang X, Zhang B. Neuroprotection of taurine against bilirubin-induced elevation of apoptosis and intracellular free calcium ion in vivo. Toxicol Mech Methods, 2011, 21(5):383-387.
|
6. |
Hachiya Y, Hayashi M. Bilirubin encephalopathy:a study of neuronal subpopulations and neurodegenerative mechanisms in 12 autopsy cases. Brain Dev, 2008, 30(4):269-278.
|
7. |
Silva RF, Rodrigues CM, Brites D. Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin. Pediatr Res, 2002, 51(4):535-541.
|
8. |
Hankø E, Hansen TW, Almaas R, et al. Bilirubin induces apoptosis and necrosis in human NT2-N neurons. Pediatr Res, 2005, 57(2):179-184.
|
9. |
Tabarki B, Khalifa M, Yacoub M, et al. Cerebellar symptoms heral-ding bilirubin encephalopathy in Crigler-Najjar syndrome. Pediatr Neurol, 2002, 27(3):234-236.
|
10. |
Furukawa Y. Histological changes in the brain due to experimental obstructive jaundice. Nihon Geka Gakkai Zasshi, 1991, 92(1):37-45.
|
11. |
Chroni E, Patsoukis N, Karageorgos N, et al. Brain oxidative stress induced by obstructive jaundice in rats. J Neuropathol Exp Neurol, 2006, 65(2):193-198.
|
12. |
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci, 2007, 8(6):413-426.
|
13. |
Xu B, Xu Z, Deng Y, et al. MK-801 protects against intracellular Ca(2+) overloading and improves N-methyl-D-aspartate receptor expression in cerebral cortex of methylmercury-poisoned rats. J Mol Neurosci, 2013, 49(1):162-171.
|
14. |
Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits:diversity, development and disease. Curr Opin Neurobiol, 2001, 11 (3):327-335.
|
15. |
Fan MM, Raymond LA. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington, s disease. Prog Neurobiol, 2007, 81(5/6):272-293.
|
16. |
Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci, 2011, 33(8):1351-1365.
|
17. |
Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl), 2005, 179(1):4-29.
|
18. |
Hardingham GE, Bading H. The yin and yang of NMDA receptor signalling. Trends Neurosci, 2003, 26(2):81-89.
|
19. |
Massey PV, Johnson BE, Moult PR, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci, 2004, 24(36):7821-7828.
|
20. |
Kosenko E, Venediktova N, Kaminsky Y, et al. Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res, 2003, 981(1/2):193-200.
|
21. |
Marcaida G, Felipo V, Hermenegildo C, et al. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett, 1992, 296(1):67-68.
|
22. |
Hermenegildo C, Marcaida G, Montoliu C, et al. NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem Res, 1996, 21(10):1237-1244.
|
23. |
Novelli A, Reilly JA, Lysko PG, et al. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res, 1988, 451(1/2):205-212.
|
24. |
Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature, 1999, 399(6738 Suppl):A7-A14.
|
25. |
Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 1999, 283(5398):70-74.
|
26. |
Palmer C, Smith MB. Assessing the risk of kernicterus using nuclear magnetic resonance. Clin Perinatol, 1990, 17(2):307-329.
|
27. |
McDonald JW, Shapiro SM, Silverstein FS, et al. Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn rat model. Exp Neurol, 1998, 150(1):21-29.
|
28. |
Grojean S, Koziel V, Vert P, et al. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp Neurol, 2000, 166(2):334-341.
|
29. |
Wennberg RP, Hance AJ. Experimental bilirubin encephalopathy:importance of total bilirubin, protein binding, and blood-brain barrier. Pediatr Res, 1986, 20(8):789-792.
|
30. |
Sarici SU, Saldir M. Genetic factors in neonatal hyperbilirubinemia and kernicterus. Turk J Pediatr, 2007, 49(3):245-249.
|
31. |
Lee CH, Lü W, Michel JC, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature, 2014, 511(758):191-197.
|
32. |
Wu Q, Zheng R, Srisai D, et al. NR2B subunit of the NMDA gluta-mate receptor regulates appetite in the parabrachial nucleus. Proc Natl Acad Sci U S A, 2013, 110(36):14765-14770.
|
33. |
Mishizen-Eberz AJ, Rissman RA, Carter TL, et al. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer's disease pathology. Neurobiol Dis, 2004, 15(1):80-92.
|
34. |
Dunah AW, Wang Y, Yasuda RP, et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson, s disease. Mol Pharmacol, 2000, 57(2):342-352.
|
35. |
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity:impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci, 2013, 14(6):383-400.
|
36. |
Thomas CG, Miller AJ, Westbrook GL. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol, 2006, 95(3):1727-1734.
|
37. |
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling:implications for neurodegenerative disorders. Nat Rev Neurosci, 2010, 11(10):682-696.
|
38. |
Mazumder M K, Borah A. Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit:an in silico study elucidating a novel mechanism of action of the drug. Med Hypotheses, 2014, 83(6):740-746.
|
39. |
Liu Y, Wong TP, Aarts M, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci, 2007, 27(11):2846-2857.
|
40. |
Chen M, Lu TJ, Chen XJ, et al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke, 2008, 39(11):3042-3048.
|
41. |
Lu C, Chan SL, Haughey N, et al. Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2, 3-nonenal on N-methyl-D-aspartate channels. J Neurochem, 2001, 78(3):577-589.
|
42. |
Yang L, Li X B, Yang Q, et al. The neuroprotective effect of praeruptorin C against NMDA-induced apoptosis through down-regulating of GluN2B-containing NMDA receptors. Toxicol In Vitro, 2013, 27(2):908-914.
|
43. |
Papadia S, Hardingham GE. The dichotomy of NMDA receptor signaling. Neuroscientist, 2007, 13(6):572-579.
|
44. |
Lafon-Cazal M, Pietri S, Culcasi M, et al. NMDA-dependent superoxide production and neurotoxicity. Nature, 1993, 364(6437):535-537.
|
45. |
Betzen C, White R, Zehendner CM, et al. Oxidative stress upregu-lates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med, 2009, 47(8):1212-1220.
|
46. |
Dawson TM, Dawson VL, Snyder SH. A novel neuronal messenger molecule in brain:the free radical, nitric oxide. Ann Neurol, 1992, 32(3):297-311.
|
47. |
Saraf MK, Prabhakar S, Anand A. Bacopa monniera alleviates N (omega)-nitro-L-arginine arginine-induced but not MK-801-induced amnesia:a mouse Morris watermaze study. Neuroscience, 2009, 160(1):149-155.
|
48. |
Kosenko E, Kaminski Y, Lopata O, et al. Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxica-tion. Free Radic Biol Med, 1999, 26(11/12):1369-1374.
|
49. |
Gáspárová-Kvaltínová Z, Stolc S. Effect of antioxidants and NMDA antagonists on the density of NMDA binding sites in rat hippoca-mpal slices exposed to hypoxia/reoxygenation. Methods Find Exp Clin Pharmacol, 2003, 25(1):17-25.
|
50. |
Mizoguchi H, Komatsu T, Iwata Y, et al. Partial involvement of NMDA receptors and glial cells in the nociceptive behaviors induced by intrathecally administered histamine. Neurosci Lett, 2011, 495(2):83-87.
|
51. |
Furuya T, Pan Z, Kashiwagi K. Role of retinal glial cell glutamate transporters in retinal ganglion cell survival following stimulation of NMDA receptor. Curr Eye Res, 2012, 37(3):170-178.
|
52. |
Jun SB, Smith KL, Shain W, et al. Optical monitoring of neural networks evoked by focal electrical stimulation on microelectrode arrays using FM dyes. Med Biol Eng Comput, 2010, 48(9):933-940.
|
53. |
Hires SA, Zhu Y, Tsien RY. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A, 2008, 105(11):4411-4416.
|
54. |
Romón T, Planas AM, Adell A. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A andα1-adrenergic receptors. CNS Neurol Disord Drug Targets, 2014, 13(1):104-111.
|
55. |
Hoffman DJ, Zanelli SA, Kubin J, et al. The in vivo effect of bilirubin on the N-methyl-D-aspartate receptor/ion channel complex in the brains of newborn piglets. Pediatr Res, 1996, 40(6):804-808.
|
56. |
Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, et al. Homocy-steine-induced brain lipid peroxidation:effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibi-tion. Neurotox Res, 2003, 5(4):237-243.
|
57. |
崔红梅, 常秀丽, 徐甫, 等. MK801抑制乐果诱导的大鼠皮层神经元凋亡的作用研究.卫生研究, 2011, 40(5):568-572.
|
58. |
Liang CL, Yang LC, Lu K, et al. Neuroprotective synergy of N-methyl-D-aspartate receptor antagonist (Mk801) and protein synthesis inhibitor (cycloheximide) on spinal cord ischemia-reperfusion injury in rats. J Neurotrauma, 2003, 20(2):195-206.
|
59. |
Fletcher PJ, Rizos Z, Noble K, et al. Impulsive action induced by amphetamine, cocaine and Mk801 is reduced by 5-HT(2C) receptor stimulation and 5-HT(2A) receptor blockade. Neuropharmacology, 2011, 61(3):468-477.
|