1. |
Jiang P, Mizushima N. Autophagy and human diseases. Cell Res, 2014, 24(1): 69-79.
|
2. |
Rinchai D, Riyapa D, Buddhisa S, et al. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils. Autophagy, 2015, 11(5): 748-755.
|
3. |
Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci, 2012, 69(7): 1125-1136.
|
4. |
Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res, 2014, 24(1): 92-104.
|
5. |
De Meyer GR, Grootaert MO, Michiels CF, et al. Autophagy in vascular disease. Circ Res, 2015, 116(3): 468-479.
|
6. |
Ryter SW, Choi AM. Autophagy in lung disease pathogenesis and therapeutics. Redox Biol, 2015, 4: 215-225.
|
7. |
Ghavami S, Gupta S, Ambrose E, et al. Autophagy and heart disease: implications for cardiac ischemia-reperfusion damage. Curr Mol Med, 2014, 14(5): 616-629.
|
8. |
Hashimoto D, Bläuer M, Hirota M, et al. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer, 2014, 50(7): 1382-1390.
|
9. |
Song L, Liu H, Ma L, et al. Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasop-haryngeal carcinoma cells. Oncol Lett, 2013, 6(4): 1031-1038.
|
10. |
Li J, Yang B, Zhou Q, et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesench-ymal transition. Carcinogenesis, 2013, 34(6): 1343-1351.
|
11. |
Dang CV. Links between metabolism and cancer. Genes Dev, 2012, 26(9): 877-890.
|
12. |
Jiang X, Overholtzer M, Thompson CB. Autophagy in cellular metabolism and cancer. J Clin Invest, 2015, 125(1): 47-54.
|
13. |
Goldsmith J, Levine B, Debnath J. Autophagy and cancer metabolism. Methods Enzymol, 2014, 542: 25-57.
|
14. |
Guo JY, Karsli-Uzunbas G, Mathew R, et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev, 2013, 27(13): 1447-1461.
|
15. |
Strohecker AM, Guo JY, Karsli-Uzunbas G, et al. Autophagy sustains mitochondrial glutamine metabolism and growth of Braf(V600E)-driven lung tumors. Cancer Discov, 2013, 3(11): 1272-1285.
|
16. |
Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120(6): 774-780.
|
17. |
Lock R, Roy S, Kenific CM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell, 2011, 22(2): 165-178.
|
18. |
Parkhitko AA, Priolo C, Coloff JL, et al. Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. Mol Cancer Res, 2014, 12(1): 48-57.
|
19. |
Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell, 2011, 42(6): 719-730.
|
20. |
Zhao D, Zou SW, Liu Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4): 464-476.
|
21. |
Lin G, Andrejeva G, Wong Te Fong AC, et al. Reduced warburg effect in cancer cells undergoing autophagy: steady-state 1H-MRS and real-time hyperpolarized 13C-MRS studies. PLoS One, 2014, 9(3): e92645.
|
22. |
Guo JY, Chen HY, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev, 2011, 25(5): 460-470.
|
23. |
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol, 2014, 25: 47-60.
|
24. |
Xu CF, Liu Y, Shen S, et al. Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials, 2015, 51: 1-11.
|
25. |
Morani F, Phadngam S, Follo C, et al. PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in thyroid cancer cells. J Mol Endocrinol, 2014, 53(2): 247-258.
|
26. |
Ciavardelli D, Rossi C, Barcaroli D, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis, 2014, 5: e1336.
|
27. |
Maiuri MC, Kroemer G. Essential role for oxidative phosphoryla-tion in cancer progression. Cell Metab, 2015, 21(1): 11-12.
|
28. |
Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation(Review). Oncol Lett, 2012, 4(6): 1151-1157.
|
29. |
Toshima T, Shirabe K, Matsumoto Y, et al. Autophagy enhances hepatocellular carcinoma progression by activation of mitochondrialβ-oxidation. J Gastroenterol, 2014, 49(5): 907-916.
|
30. |
Walter KM, Schönenberger MJ, Trötzmüller M, et al. HIF-2αpromotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab, 2014, 20(5): 882-897.
|
31. |
Lin TC, Chen YR, Kensicki E, et al. Autophagy: resetting glutamine-dependent metabolism and oxygen consumption. Autophagy, 2012, 8(10): 1477-1493.
|
32. |
Kim S, Kim do H, Jung WH, et al. Metabolic phenotypes in triple-negative breast cancer. Tumour Biol, 2013, 34(3): 1699-1712.
|
33. |
Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors:MCT4 is a marker of oxidative stress in cancer-associated fibrob-lasts. Cell Cycle, 2011, 10(11): 1772-1783.
|
34. |
Sonveaux P, Vegran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest, 2008, 118(12): 3930-3942.
|
35. |
Strohecker AM, White E. Targeting mitochondrial metabolism by inhibiting autophagy in BRAF-driven cancers. Cancer Discov, 2014, 4(7): 766-772.
|
36. |
Li Z, Zhu WG. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int J Biol Sci, 2014, 10(7): 757-770.
|