1. |
Singh K, Bønaa KH, Jacobsen BK, et al. Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study: The Tromsø Study. Am J Epidemiol, 2001, 154(3): 236-244.
|
2. |
王深明, 姚陈. 腹主动脉瘤血管腔内治疗的现状与进展. 中国普外基础与临床杂志, 2014, 21(6): 657-659.
|
3. |
Liu G, Yang H. Modulation of macrophage activation and programming in immunity. J Cell Physiol, 2013, 228(3): 502-512.
|
4. |
Kanematsu Y, Kanematsu M, Kurihara C, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke, 2011, 42(1): 173-178.
|
5. |
Johnston KW, Rutherford RB, Tilson MD, et al. Suggested standards for reporting on arterial aneurysms. J Vasc Surg, 1991, 13(3): 452-458.
|
6. |
Kniemeyer HW, Kessler T, Reber PU, et al. Treatment of ruptured abdominal aortic aneurysm, a permanent challenge or a waste of resources? Prediction of outcome using a multi-organ-dysfunction score Eur J Vasc Endovasc Surg, 2000, 19(2): 190-196.
|
7. |
Blanchard JF, Armenian HK. Friesen PP. Risk factors for abdominal aortic aneurysm: results of a case-control study. Am J Epidemiol, 2000, 151(6): 575-583.
|
8. |
Eagleton MJ. Inflammation in abdominal aortic aneurysms: cellular infiltrate and cytokine profiles. Vascular, 2012, 20(5): 278-283.
|
9. |
Hwang JS, Kim HJ, Kim G, et al. PPARδ reduces abdominal aortic aneurysm formation in angiotensin Ⅱ-infused apolipoprotein E-deficient mice by regulating extracellular matrix homeostasis and inflammatory responses. Int J Cardiol, 2014, 174(1): 43-50.
|
10. |
Galboiz Y, Shapiro S, Lahat N, et al. Modulation of monocytes matrix metalloproteinase-2, MT1-MMP and TIMP-2 by interferon-gamma and -beta: implications to multiple sclerosis. J Neuroimmunol, 2002, 131(1-2): 191-200.
|
11. |
Krettek A, Sukhova GK, Schönbeck U, et al. Enhanced expression of CD44 variants in human atheroma and abdominal aortic aneurysm: possible role for a feedback loop in endothelial cells. Am J Pathol, 2004, 165(5): 1571-1581.
|
12. |
Sun J, Sukhova GK, Yang M, et al. Mast cells modulate the pathoge nesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest, 2007, 117(11): 3359-3368.
|
13. |
Schönbeck U, Sukhova GK, Gerdes N, et al. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol, 2002, 161(2): 499-506.
|
14. |
Shimizu K, Libby P, Mitchell RN. Local cytokine environments drive aneurysm formation in allografted aortas. Trends Cardiovasc Med, 2005, 15(4): 142-148.
|
15. |
Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol, 2006, 26(5): 987-994.
|
16. |
Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature, 2000, 405(6785): 421-424.
|
17. |
Chawla A. Control of macrophage activation and function by PPARs. Circ Res, 2010, 106(10): 1559-1569.
|
18. |
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity, 2010, 32(5): 593-604.
|
19. |
Golledge J, Muller J, Shephard N, et al. Association between osteo-pontin and human abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol, 2007, 27(3): 655-660.
|
20. |
Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev, 2008, 19(5-6): 333-345.
|
21. |
Bruemmer D, Collins AR, Noh G, et al. AngiotensinⅡ-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest, 2003, 112(9): 1318-1331.
|
22. |
Golledge J, Cullen B, Rush C, et al. Peroxisome proliferator-activated receptor ligands reduce aortic dilatation in a mouse model of aortic aneurysm. Atherosclerosis, 2010, 210(1): 51-56.
|
23. |
Satta J, Mennander A, Soini Y. Increased medial TUNEL-positive staining associated with apoptotic bodies is linked to smooth muscle cell diminution during evolution of abdominal aortic aneurysms. Ann Vasc Surg, 2002, 16(4): 462-466.
|
24. |
Kim HJ, Ham SA, Kim SU, et al. Transforming growth factor-beta1 is a molecular target for the peroxisome proliferator-activated receptor delta. Circ Res, 2008, 102(2): 193-200.
|
25. |
Moran CS, McCann M, Karan M, et al. Association of osteoprote-gerin with human abdominal aortic aneurysm progression. Circulation, 2005, 111(23): 3119-3125.
|
26. |
Moran CS, Cullen B, Campbell JH, et al. Interaction between angio-tensinⅡ, osteoprotegerin, and peroxisome proliferator-activated receptor-gamma in abdominal aortic aneurysm. J Vasc Res, 2009, 46(3): 209-217.
|
27. |
Zhang J, Fu M, Myles D, et al. PDGF induces osteoprotegerin expre-ssion in vascular smooth muscle cells by multiple signal pathways. FEBS Lett, 2002, 521(1-3): 180-184.
|
28. |
Moran CS, Clancy P, Biros E, et al. Association of PPARgamma allelic variation, osteoprotegerin and abdominal aortic aneurysm. Clin Endocrinol (Oxf), 2010, 72(1): 128-132.
|
29. |
Hamblin M, Chang L, Zhang H, et al. Vascular smooth muscle cell peroxisome proliferator-activated receptor-γ deletion promotes abdominal aortic aneurysms. J Vasc Surg, 2010, 52(4): 984-993.
|
30. |
Shimizu K, Shichiri M, Libby P, et al. Th2-predominant inflamma-tion and blockade of IFN-gamma signaling induce aneurysms in allografted aortas. J Clin Invest, 2004, 114(2): 300-308.
|
31. |
Bouhlel MA, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab, 2007, 6(2): 137-143.
|
32. |
Gordon S. Alternative activation of macrophages. Nat Rev Immunol, 2003, 3(1): 23-35.
|
33. |
Porcheray F, Viaud S, Rimaniol AC, et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol, 2005, 142(3): 481-489.
|
34. |
Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-gamma as a regulator of lung inflammation and repair. Proc Am Thorac Soc, 2005, 2(3): 226-231.
|
35. |
Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation. Nat Rev Immunol, 2010, 10(5): 365-376.
|
36. |
Zou S, Ren P, Nguyen M, et al. Notch signaling in descending thor-acic aortic aneurysm and dissection. PLoS One, 2012, 7(12): e52833.
|
37. |
Wang YC, He F, Feng F, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res, 2010, 70(12): 4840-4849.
|
38. |
Zheng YH, Li FD, Tian C, et al. Notch γ-secretase inhibitor dibenzazepine attenuates angiotensinⅡ-induced abdominal aortic aneurysm in ApoE knockout mice by multiple mechanisms. PLoS One, 2013, 8(12): e83310.
|
39. |
Xiong W, Zhao Y, Prall A, et al. Key roles of CD4+ T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model. J Immunol, 2004, 172(4): 2607-2612.
|
40. |
Xiong W, Mactaggart J, Knispel R, et al. Blocking TNF-alpha attenuates aneurysm formation in a murine model. J Immunol, 2009, 183(4): 2741-2746.
|
41. |
Hans CP, Koenig SN, Huang N, et al. Inhibition of notch1 signaling reduces abdominal aortic aneurysm in mice by attenuating macrophage-mediated inflammation. Arterioscler Thromb Vasc Biol, 2012, 32(12): 3012-3023.
|