1. |
Marqués-Lespier JM, González-Pons M, Cruz-Correa M. Current perspectives on gastric cancer. Gastroenterol Clin North Am, 2016, 45(3): 413-428.
|
2. |
Sun W, Yan L. Gastric cancer: current and evolving treatment landscape. Chin J Cancer, 2016, 35(1): 83.
|
3. |
Wan X, Ding X, Chen S, et al. The functional sites of miRNAs and lncRNAs in gastric carcinogenesis. Tumour Biol, 2015, 36(2): 521-532.
|
4. |
da Silva Oliveira KC, Thomaz Araújo TM, Albuquerque CI, et al. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol, 2016, 22(35): 7951-7962.
|
5. |
Montini E, Andolfi G, Caruso A, et al. Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics, 1998, 51(3): 427-433.
|
6. |
Valli E, Trazzi S, Fuchs C, et al. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. Biochim Biophys Acta, 2012, 1819(11-12): 1173-1185.
|
7. |
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, et al. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol, 2016, 781: 10-24.
|
8. |
Sánchez-Martínez C, Gelbert LM, Lallena MJ, et al. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett, 2015, 25(17): 3420-3345.
|
9. |
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol, 2015, 3: 16.
|
10. |
Kagami Y, Yoshida K. The functional role for condensin in the regulation of chromosomal organization during the cell cycle. Cell Mol Life Sci, 2016, 73(24): 4591-4598.
|
11. |
Mahipal A, Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther, 2016, 164: 135-143.
|
12. |
袁浩, 闵志均, 陈进宏, 等. 甲状腺乳头状癌 TPC-1 细胞中 FoxM1 的表达对 Ras 及 CDK1 的影响. 中国普外基础与临床杂志, 2016, 23(2): 172-176.
|
13. |
吴铎, 徐大方, 赵群, 等. 结直肠癌组织 CDK8 及 TGF-β1 mRNA 和蛋白表达及与其临床病理因素相关性分析. 中国普外基础与临床杂志, 2016, 23(7): 813-817.
|
14. |
Willemsen MH, Rensen JH, van Schrojenstein-Lantman de Valk HM, et al. Adult phenotypes in angelman- and rett-like syndromes. Mol Syndromol, 2012, 2(3-5): 217-234.
|
15. |
Lucariello M, Vidal E, Vidal S, et al. Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype. Hum Genet, 2016, 135(12): 1343-1354.
|
16. |
Ernst C. Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci, 2016, 39(5): 290-299.
|
17. |
Varghese RT, Liang Y, Guan T, et al. Survival kinase genes present prognostic significance in glioblastoma. Oncotarget, 2016, 7(15): 20140-20151.
|
18. |
Vitezic M, Bertin N, Andersson R, et al. CAGE-defined promoter regions of the genes implicated in Rett syndrome. BMC Genomics, 2014, 15: 1177.
|
19. |
Zang ZJ, Ong CK, Cutcutache I, et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res, 2011, 71(1): 29-39.
|
20. |
Kawahara M, Hori T, Matsubara Y, et al. Cyclin-dependent kinaselike 5 is a novel target of immunotherapy in adult T-cell leukemia. J Immunother, 2007, 30(5): 499-505.
|
21. |
Kawahara M, Hori T, Matsubara Y, et al. Identification of HLA class I-restricted tumor-associated antigens in adult T cell leukemia cells by mass spectrometric analysis. Exp Hematol, 2006, 34(11): 1496-1504.
|
22. |
Lin C, Franco B, Rosner MR. CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet, 2005, 14(24): 3775-3786.
|
23. |
Kameshita I, Sekiguchi M, Hamasaki D, et al. Cyclin-dependent kinase-like 5 binds and phosphorylates DNA methyltransferase 1. Biochem Biophys Res Commun, 2008, 377(4): 1162-1167.
|
24. |
Mari F, Azimonti S, Bertani I, et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet, 2005, 14(14): 1935-1946.
|
25. |
Chen Q, Zhu YC, Yu J, et al. CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci, 2010, 30(38): 12777-12786.
|
26. |
Ricciardi S, Ungaro F, Hambrock M, et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol, 2012, 14(9): 911-923.
|
27. |
Zhu YC, Li D, Wang L, et al. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci USA, 2013, 110(22): 9118-9123.
|
28. |
Sekiguchi M, Katayama S, Hatano N, et al. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys, 2013, 535(2): 257-267.
|