1. |
Libby P, Pober JS. Chronic rejection. Immunity, 2001, 14(4): 387-397.
|
2. |
Sayegh MH, Carpenter CB. Transplantation 50 years later—progress, challenges, and promises. N Engl J Med, 2004, 351(26): 2761-2766.
|
3. |
Tantravahi J, Womer KL, Kaplan B. Why hasn’t eliminating acute rejection improved graft survival? Annu Rev Med, 2007, 58: 369-385.
|
4. |
Hillebrands JL, Rozing J. Chronic transplant dysfunction and transplant arteriosclerosis: new insights into underlying mechanisms. Expert Rev Mol Med, 2003, 5(2): 1-23.
|
5. |
Rahmani M, Cruz RP, Granville DJ, et al. Allograft vasculopathy versus atherosclerosis. Circ Res, 2006, 99(8): 801-815.
|
6. |
Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoEdeficient mice. J Clin Invest, 2004, 113(9): 1258-1265.
|
7. |
Häyry P. Chronic rejection: an update on the mechanism. Transplant Proc, 1998, 30(8): 3993-3995.
|
8. |
Li J, Xiong J, Yang B, et al. Endothelial cell apoptosis induces TGF-β signaling-dependent host endothelial-mesenchymal transition to promote transplant arteriosclerosis. Am J Transplant, 2015, 15(12): 3095-3111.
|
9. |
Cooley BC, Nevado J, Mellad J, et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med, 2014, 6(227): 227ra34.
|
10. |
McGuire PG, Orkin RW. Isolation of rat aortic endothelial cells by primary explant techniques and their phenotypic modulation by defined substrata. Lab Invest, 1987, 57(1): 94-105.
|
11. |
Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423): 801-809.
|
12. |
Katoh Y, Periasamy M. Growth and differentiation of smooth muscle cells during vascular development. Trends Cardiovasc Med, 1996, 6(3): 100-106.
|
13. |
Yu H, Clarke MC, Figg N, et al. Smooth muscle cell apoptosis promotes vessel remodeling and repair via activation of cell migration, proliferation, and collagen synthesis. Arterioscler Thromb Vasc Biol, 2011, 31(11): 2402-2409.
|
14. |
Grudzinska MK, Kurzejamska E, Bojakowski K, et al. Monocyte chemoattractant protein 1-mediated migration of mesenchymal stem cells is a source of intimal hyperplasia. Arterioscler Thromb Vasc Biol, 2013, 33(6): 1271-1279.
|
15. |
Li J, Liu S, Li W, et al. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1alpha. Am J Transplant, 2012, 12(8): 2029-2043.
|
16. |
Rouchaud A, Journé C, Louedec L, et al. Autologous mesenchymal stem cell endografting in experimental cerebrovascular aneurysms. Neuroradiology, 2013, 55(6): 741-749.
|
17. |
Zavadil J, Böttinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005, 24(37): 5764-5774.
|
18. |
Chu S, Zhang X, Sun Y, et al. Atrial natriuretic peptide: A novel mediator for TGF-β1-induced epithelial-mesenchymal transition in 16HBE-14o and A549 cells. Peptides, 2017, 90: 1-9.
|
19. |
Wang H, Nie L, Wu L, et al. NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-mesenchymal transition of CRC via transactivation of miR-21. Biochem Biophys Res Commun, 2017, 485(1): 181-188.
|
20. |
Griggs LA, Hassan NT, Malik RS, et al. Fibronectin fibrils regulate TGF-β1-induced epithelial-mesenchymal transition. Matrix Biol, 2017, 60-61: 157-175.
|
21. |
Jiang Q, Han Y, Gao H, et al. Ursolic acid induced anti-proliferation effects in rat primary vascular smooth muscle cells is associated with inhibition of microRNA-21 and subsequent PTEN/PI3K. Eur J Pharmacol, 2016, 781: 69-75.
|
22. |
Baroja-Mazo A, Revilla-Nuin B, Ramírez P, et al. Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation. World J Transplant, 2016, 6(1): 183-192.
|
23. |
Aggarwal K, Massagué J. Ubiquitin removal in the TGF-β pathway. Nat Cell Biol, 2012, 29, 14(7): 656-657.
|
24. |
Xiao L, Peng X, Liu F, et al. AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by Smurf2 and deubiquitinating enzyme USP4. BMC Cell Biol, 2015, 16: 7.
|
25. |
Cao WH, Liu XP, Meng SL, et al. USP4 promotes invasion of breast cancer cells via Relaxin/TGF-β1/Smad2/MMP-9 signal. Eur Rev Med Pharmacol Sci, 2016, 20(6): 1115-1122.
|