1. |
Makarchian HR, Kasraianfard A, Ghaderzadeh P, et al. The effectiveness of heparin, platelet-rich plasma (PRP), and silver nanoparticles on prevention of postoperative peritoneal adhesion formation in rats. Acta Cir Bras, 2017, 32(1): 22-27.
|
2. |
Brochhausen C, Schmitt VH, Mamilos A, et al. Expression of CD68 positive macrophages in the use of different barrier materials to prevent peritoneal adhesions—an animal study. J Mater Sci Mater Med, 2017, 28(1): 15.
|
3. |
Hamming JF, Bonsing BA. Adhesiolysis during abdominal surgery: substantial risks. Ned Tijdschr Geneeskd, 2013, 157(7): A5928.
|
4. |
田易军, 胡森. 腹腔粘连机制和防治研究进展. 感染、炎症、修复, 2008, 9(2): 126-128.
|
5. |
Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol, 2011, 17(41): 4545-4553.
|
6. |
Brüggmann D, Tchartchian G, Wallwiener M, et al. Intra-abdominal adhesions: definition, origin, significance in surgical practice, and treatment options. Dtsch Arztebl Int, 2010, 107(44): 769-775.
|
7. |
刘宾, 彭创. 腹腔粘连的研究进展. 中国现代医生, 2013, 51(5): 24-25.
|
8. |
González-Quintero VH, Cruz-Pachano FE. Preventing adhesions in obstetric and gynecologic surgical procedures. Rev Obstet Gynecol, 2009, 2(1): 38-45.
|
9. |
Atta HM. Prevention of peritoneal adhesions: a promising role for gene therapy. World J Gastroenterol, 2011, 17(46): 5049-5058.
|
10. |
Alpay Z, Saed GM, Diamond MP. Postoperative adhesions: from formation to prevention. Semin Reprod Med, 2008, 26(4): 313-321.
|
11. |
Vergnts J, Coosemans A, Corona R, et al. Intraperitoneal injection of cultured mesothelial cells decrease CO2 pneumoperitoneum-enhanced adhesions in a laparoscopic mouse model. Gynecol Surg, 2011, 8(4): 409-414.
|
12. |
Corona R, Verguts J, Koninckx R, et al. Intraperitoneal temperature and desiccation during endoscopic surgery. Intraoperative humidification and cooling of the peritoneal cavity can reduce adhesions. Am J Obstet Gynecol, 2011, 205(4): 392.e1-7.
|
13. |
赵义江, 张国志, 王长友, 等. 腹腔粘连的研究现状分析. 华北煤炭医学院学报, 2011, 13(6): 777-779.
|
14. |
Zhang Y, Liu Q, Yang N, et al. Hyaluronic acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models. Drug Des Devel Ther, 2016, 10: 3501-3507.
|
15. |
Koca YS, Tarhan R, Kaya S, et al. Effects of saline lavage temperature on peritoneal fibrinolysis and adhesion formation. Ulus Travma Acil Cerrahi Derg, 2016, 22(1): 1-6.
|
16. |
林思, 秦飞, 宋路瑶, 等. 丹参酮ⅡA 磺酸钠通过增强腹膜纤溶系统活性降低大鼠术后腹膜粘连发生. 南方医科大学学报, 2016, 36(2): 260-264.
|
17. |
颜帅, 李文林, 曾莉. 腹腔微环境与腹腔粘连相关性的研究进展. 实用医学杂志, 2014, 30(1): 155-157.
|
18. |
Sapir L, Tzlil S. Talking over the extracellular matrix: How do cells communicate mechanically? Semin Cell Dev Biol, 2017 Jun 16. pii: S1084-9521(16)30310-X.
|
19. |
Maciver AH, McCall M, James Shapiro AM. Intra-abdominal adhesions: cellular mechanisms and strategies for prevention. Int J Surg, 2011, 9(8): 589-594.
|
20. |
Bayhan Z, Zeren S, Kocak FE, et al. Antiadhesive and anti-inflammatory effects of pirfenidone in postoperative intra-abdominal adhesion in an experimental rat model. J Surg Res, 2016, 201(2): 348-355.
|
21. |
Yan S, Yang L, Yue YZ, et al. Effect of ligustrazine nanoparticles nano spray on transforming growth factor-β/Smad signal pathway of rat peritoneal mesothelial cells induced by tumor necrosis factor-α. Chin J Integr Med, 2016, 22(8): 629-634.
|
22. |
陈志新. 腹腔粘连的形成及术后预防. 中国普外基础与临床杂志, 2003, 10(5): 509-510.
|
23. |
Braun KM, Diamond MP. The biology of adhesion formation in the peritoneal cavity. Semin Pediatr Surg, 2014, 23(6): 336-343.
|
24. |
Koninckx PR, Gomel V, Ussia A, et al. Role of the peritoneal cavity in the prevention of postoperative adhesions, pain, and fatigue. Fertil Steril, 2016, 106(5): 998-1010.
|
25. |
Xiao L, Sun L, Liu FY, et al. Connective tissue growth factor knockdown attenuated matrix protein production and vascular endothelial growth factor expression induced by transforming growth factor-beta1 in cultured human peritoneal mesothelial cells. Ther Apher Dial, 2010, 14(1): 27-34.
|
26. |
兰义兵, 周坚红. 妇科手术后粘连发生机制及防治研究进展. 国际妇产科学杂志, 2010, 37(3): 179-182.
|
27. |
刘博, 葛春林, 宋茂民. 奥曲肽预防术后腹腔粘连的实验研究. 中国现代普通外科进展, 2004, 7(5): 294.
|
28. |
Nappi C, Di Spiezio Sardo A, Greco E, et al. Prevention of adhesions in gynaecological endoscopy. Hum Reprod Update, 2007, 13(4): 379-394.
|
29. |
Topal E, Ozturk E, Sen G, et al. A comparison of three fibrinolytic agents in prevention of intra-abdominal adhesions. Acta Chir Belg, 2010, 110(1): 71-75.
|
30. |
翁永强, 涂彦渊, 肖立, 等. 转化生长因子-β 多克隆抗体预防腹腔粘连的实验研究. 中国普通外科杂志, 2002, 11(12): 741-745.
|
31. |
Zhang Z, Garron TM, Li XJ, et al. Recombinant human decorin inhibits TGF-beta1-induced contraction of collagen lattice by hypertrophic scar fibroblasts. Burns 2009; 35: 527-537.
|
32. |
郑振华, 张桦, 潘玉先, 等.应用 VEGF 抗体预防术后腹腔粘连的实验研究.世界华人杂志, 1999, 7:227.
|
33. |
Ignjatovic D, Aasland K, Pettersen M, et al. Intra-abdominal administration of bevacizumab diminishes intra-peritoneal adhesions. Am J Surg, 2010; 200(2): 270-275.
|
34. |
Hellebrekers BW, Trimbos-Kemper TC, Boesten L, et al. Preoperative predictors of postsurgical adhesion formation and the prevention of adhesions with plasminogen activator (PAPA-study): results of a clinical pilot study. Fertil Steril, 2009, 91(4): 1204-1214.
|
35. |
Atta HM, Al-Hendy A, El-Rehany MA, et al. Adenovirus-mediated overexpression of human tissue plasminogen activator prevents peritoneal adhesion formation/reformation in rats. Surgery, 2009, 146(1): 12-17.
|
36. |
曾莉, 颜帅, 李文林. 国外抗腹腔粘连材料的研究进展. 医学研究生学报, 2014, 27(12): 1315-1317.
|
37. |
Yang B, Gong C, Zhao X, et al. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int J Nanomedicine, 2012, 7: 547-557.
|
38. |
Gong CY, Wu QJ, Liao JF, et al. Prevention of postsurgical cauterization-induced peritoneal adhesions by biodegradable and thermosensitive micelles. J Biomed Nanotechnol, 2013, 9(12): 1984-1995.
|
39. |
Pan G, Liu S, Zhao X, et al. Full-course inhibition of biodegradation-induced inflammation in fibrous scaffold by loading enzyme-sensitive prodrug. Biomaterials, 2015, 53: 202-210.
|
40. |
Cheng L, Sun X, Zhao X, et al. Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials, 2016, 83: 169-181.
|
41. |
Jiang S, Zhao X, Chen S, et al. Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions. Biomaterials, 2014, 35(37): 9920-9929.
|