1. |
Herrero R, Park JY, Forman D. The fight against gastric cancer—the IARC Working Group report. Best Pract Res Clin Gastroenterol, 2014, 28(6): 1107-1114.
|
2. |
朱海涛, 赵宜良, 吴云飞, 等. 胃癌各组淋巴结的转移特点及其在实施合理根治术中的指导意义. 中华肿瘤杂志, 2008, 30(11): 863-865.
|
3. |
Deng J, Liang H, Sun D, et al. Suitability of 7th UICC N stage for predicting the overall survival of gastric cancer patients after curative resection in China. Ann Surg Oncol, 2010, 17(5): 1259-1266.
|
4. |
Saito H, Fukumoto Y, Osaki T, et al. Prognostic significance of level and number of lymph node metastases in patients with gastric cancer. Ann Surg Oncol, 2007, 14(5): 1688-1693.
|
5. |
Fiorito S, Serafino A, Andreola F, et al. Toxicity and biocompatibility of carbon nanoparticles. J Nanosci Nanotechnol, 2006, 6(3): 591-599.
|
6. |
郭文斌, 高伟, 刘金涛, 等. 纳米碳对乳腺癌腋窝前哨淋巴结活检的应用价值. 中国普通外科杂志, 2012, 21(11): 1346-1349.
|
7. |
Li Y, Jian WH, Guo ZM, et al. A meta-analysis of carbon nanoparticles for identifying lymph nodes and protecting parathyroid glands during surgery. Otolaryngol Head Neck Surg, 2015, 152(6): 1007-1016.
|
8. |
Utsav M. Literature survey on carbon nanotubes and their potential applications in cancer treatment. IEEE, 2014, 12(5): 18-21.
|
9. |
Guven A, Rusakova IA, Lewis MT, et al. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials, 2012, 33(5): 1455-1461.
|
10. |
Hong SY, Tobias G, Al-Jamal KT, et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater, 2010, 9(6): 485-490.
|
11. |
Yamashita T, Yamashita K, Nabeshi H, et al. Carbon nanomaterials: efficacy and safety for nanomedicine. Materials (Basel), 2012, 5(2): 350-363.
|
12. |
Karchemski F, Zucker D, Barenholz Y, et al. Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. J Control Release, 2012, 160(2): 339-345.
|
13. |
Behnam B, Shier WT, Nia AH, et al. Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm, 2013, 454(1): 204-215.
|
14. |
Sun H, She P, Lu GL, et al. Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci, 2014, 49(20): 6845-6854.
|
15. |
Jain KK. Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin Drug Discov, 2012, 7(11): 1029-1037.
|
16. |
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond), 2012, 7(8): 1253-1271.
|
17. |
Ravelli D, Merli D, Quartarone E, et al. PEGylated carbon nanotubes: preparation, properties and applications. RSC Adv, 2013, 33(3): 13569-13582.
|
18. |
Razzazan A, Atyabi F, Kazemi B, et al. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C Mater Biol Appl, 2016, 62: 614-625.
|
19. |
Wen S, Liu H, Cai H, et al. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv Healthc Mater, 2013, 2(9): 1267-1276.
|
20. |
Shearer CJ, Yu L, Fenati R, et al. Adsorption and desorption of single-stranded DNA from single-walled carbon nanotubes. Chem Asian J, 2017, 12(13): 1625-1634.
|
21. |
Boyer PD, Ganesh S, Qin Z, et al. Delivering single-walled carbon nanotubes to the nucleus using engineered nuclear protein domains. ACS Appl Mater Interfaces, 2016, 8(5): 3524-3534.
|
22. |
Mu Q, Broughton DL, Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett, 2009, 9(12): 4370-4375.
|
23. |
Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part Ⅱ: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv, 2015, 12(7): 1089-1105.
|
24. |
Dong J, Porter DW, Batteli LA, et al. Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes. Arch Toxicol, 2015, 89(4): 621-633.
|
25. |
Stueckle TA, Davidson DC, Derk R, et al. Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology, 2017, 11(5): 613-624.
|
26. |
Qin Y, Li S, Zhao G, et al. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway. Int J Nanomedicine, 2016, 12: 263-277.
|
27. |
Pondman KM, Paudyal B, Sim RB, et al. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. Nanoscale, 2017, 9(3): 1097-1109.
|
28. |
Morimoto Y, Hirohashi M, Ogami A, et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology, 2012, 6(6): 587-599.
|
29. |
Saha D, Heldt CL, Gencoglu MF, et al. A study on the cytotoxicity of carbon-based materials. Mater Sci Eng C Mater Biol Appl, 2016, 68: 101-108.
|
30. |
Zhang T, Tang M, Zhang S, et al. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int J Nanomedicine, 2017, 12: 1539-1554.
|
31. |
Hussain S, Ji Z, Taylor AJ, et al. Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano, 2016, 10(8): 7675-7688.
|
32. |
葛现才, 周岩冰, 徐宪辉, 等. 纳米碳示踪技术在腹腔镜结肠癌根治术中的应用. 中国普通外科杂志, 2017, 26(4): 494-500.
|
33. |
Wu X, Lin Q, Chen G, et al. Sentinel lymph node detection using carbon nanoparticles in patients with early breast cancer. PLoS One, 2015, 10(8): e0135714.
|
34. |
Xu XF, Gu J. The application of carbon nanoparticles in the lymph node biopsy of cN0 papillary thyroid carcinoma: A randomized controlled clinical trial. Asian J Surg, 2017, 40(5): 345-349.
|
35. |
Alatengbaolide, Lin D, Li Y, et al. Lymph node ratio is an independent prognostic factor in gastric cancer after curative resection (R0) regardless of the examined number of lymph nodes. Am J Clin Oncol, 2013, 36(4): 325-330.
|
36. |
Kaibara N, Otani Y, Inoue H, et al. Meeting report of the 76th Congress of the Japanese Gastric Cancer Association. Gastric Cancer, 2004, 7(4): 185-195.
|
37. |
苏力夫, 张生彬, 朱永蒙. 纳米碳示踪前哨淋巴结在 cNO 甲状腺乳头状癌中的应用. 中国现代医学杂志, 2013, 23(7): 110-112.
|
38. |
陈鸿源, 王亚楠, 薛芳沁, 等. 腹腔镜下静脉输液针注射法纳米碳淋巴示踪技术在胃癌根治术中的应用. 中华胃肠外科杂志, 2014, 17(5): 457-460.
|
39. |
Wang H, Chen MM, Zhu GS, et al. Lymph node mapping with carbon nanoparticles and the risk factors of lymph node metastasis in gastric cancer. J Huazhong Univ Sci Technolog Med Sci (Medical Sciences), 2016, 36(6): 865-870.
|
40. |
李天梁, 李蜀华, 冷尉, 等. 纳米碳淋巴示踪剂术前胃镜下注射与术中注射在胃癌根治术中的对照研究. 疑难病杂志, 2015, 14(10): 1047-1049.
|
41. |
Park JY, Kim YW, Ryu KW, et al. Assessment of laparoscopic stomach preserving surgery with sentinel basin dissection versus standard gastrectomy with lymphadenectomy in early gastric cancer-A multicenter randomized phase Ⅲ clinical trial (SENORITA trial) protocol. BMC Cancer, 2016, 16: 340.
|
42. |
Yan J, Zheng X, Liu Z, et al. A multicenter study of using carbon nanoparticles to show sentinel lymph nodes in early gastric cancer. Surg Endosc, 2016, 30(4): 1294-1300.
|
43. |
任玮, 张松, 王萌, 等. 前哨淋巴结导航技术在早期胃癌内镜非治愈性切除后腹腔镜处理中的应用价值. 中华消化内镜杂志, 2016, 33(12): 826-828.
|
44. |
Mieog JS, Troyan SL, Hutteman M, et al. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol, 2011, 18(9): 2483-2491.
|
45. |
程科, 庄競, 李保东, 等. 纳米碳淋巴示踪剂在腹腔镜辅助下进展期胃癌根治术中的应用及评价. 中国普外基础与临床杂志, 2016, 23(12): 1460-1463.
|
46. |
Feng J, Wu YF, Xu HM, et al. Prognostic significance of the metastatic lymph node ratio in T3 gastric cancer patients undergoing total gastrectomy. Asian Pac J Cancer Prev, 2011, 12(12): 3289-3292.
|
47. |
时俊霞, 王孝兰, 师丙帅. 淋巴结比率对胃癌患者的预后价值分析. 消化肿瘤杂志 (电子版), 2015, 7(1): 9-13.
|
48. |
de Steur WO, Hartgrink HH, Dikken JL, et al. Quality control of lymph node dissection in the Dutch Gastric Cancer Trial. Br J Surg, 2015, 102(11): 1388-1393.
|
49. |
张志栋, 刘庆伟, 李勇, 等. 纳米炭在局部进展期胃癌术前化疗后淋巴结检获中的应用价值. 中国全科医学, 2016, 19(2): 179-183.
|
50. |
Li Z, Ao S, Bu Z, et al. Clinical study of harvesting lymph nodes with carbon nanoparticles in advanced gastric cancer: a prospective randomized trial. World J Surg Oncol, 2016, 14: 88.
|
51. |
Kushwaha SK, Rastogi A, Rai AK, et al. Novel drug delivery system for anticancer drug: A review. Int J Pharm Res, 2012, 4(2): 542-553.
|
52. |
Vashist SK, Zheng D, Pastorin G, et al. Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 2011, 49(13): 4077-4097.
|
53. |
Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release, 2015, 200: 138-157.
|
54. |
Li Z, de Barros ALB, Soares DCF, et al. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm, 2017, 524(1-2): 41-54.
|
55. |
Hashemzadeh H, Raissi H. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study. J Mol Model, 2017, 23(8): 222.
|
56. |
Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev, 2013, 65(15): 1964-2015.
|
57. |
Hou L, Zhang H, Wang Y, et al. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent. Int J Nanomedicine, 2015, 10: 4507-4520.
|
58. |
Shao W, Paul A, Zhao B, et al. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials, 2013, 34(38): 10109-10119.
|
59. |
Tahermansouri H, Aryanfar Y, Biazar E. Synthesis, characterization, and the influence of functionalized multi-walled carbon nanotubes with creatinine and 2-aminobenzophenone on the gastric cancer cells. Bulletin- Korean Chem Soc, 2013, 34: 149-153 .
|
60. |
Tahermansouri H, Ghobadinejad H. Functionalization of short multi-walled carbon nanotubes with creatinine and aromatic aldehydes via microwave and thermal methods and their influence on the MKN48 and MCF7 cancer cells. C R Chimie, 2013, 16(9): 838-844.
|
61. |
Ghasemvand F, Biazar E, Tavakolifard S, et al. Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent. Gastroenterol Hepatol Bed Bench, 2016, 9(3): 197-204.
|
62. |
Yao HJ, Zhang YG, Sun L, et al. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials, 2014, 35(33): 9208-9223.
|
63. |
Nakamura K, Iinuma H, Aoyagi Y, et al. Predictive value of cancer stem-like cells and cancer-associated genetic markers for peritoneal recurrence of colorectal cancer in patients after curative surgery. Oncology, 2010, 78(5-6): 309-315.
|
64. |
Sun M, Zhou W, Zhang YY, et al. CD44+ gastric cancer cells with stemness properties are chemoradioresistant and highly invasive. Oncol Lett, 2013, 5(6): 1793-1798.
|
65. |
Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release, 2008, 132(3): 164-170.
|
66. |
Taghavi S, Nia AH, Abnous K, et al. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm, 2017, 516(1-2): 301-312.
|
67. |
Guven A, Villares GJ, Hilsenbeck SG, et al. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomaterialia, 2017, 58: 466-478.
|