1. |
van Dijk SM, Hallensleben NDL, van Santvoort HC, et al. Acute pancreatitis: recent advances through randomised trials. Gut, 2017, 66(11): 2024-2032.
|
2. |
Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international concensus. Gut, 2013, 62(1): 102-111.
|
3. |
王兴鹏, 李兆申, 袁耀宗, 等. 中国急性胰腺炎诊治指南(2013, 上海). 中华胰腺病杂志, 2013, 13(2): 73-78.
|
4. |
Vege SS, Gardner TB, Chari ST, et al. Low mortality and high morbidity in severe acute pancreatitis without organ failure: a case for revising the Atlanta classification to include " moderately severe acute pancreatitis”. Am J Gastroenterol, 2009, 104(3): 710-715.
|
5. |
da Silva S, Rocha M, Pinto-de-Sousa J. Acute pancreatitis etiology investigation: a workup algorithm proposal. GE Port J Gastroenterol, 2017, 24(3): 129-136.
|
6. |
Bai Y, Liu Y, Jia L, et al. Severe acute pancreatitis in China: etiology and mortality in 1 976 patients. Pancreas, 2007, 35(3): 232-237.
|
7. |
Su Y, Wu H, Pavlosky A, et al. Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis, 2016, 7(8): e2333.
|
8. |
Gao B, Wang D, Sun W, et al. Differentially expressed microRNA identification and target gene function analysis in starvation-induced autophagy of AR42J pancreatic acinar cells. Mol Med Rep, 2016, 14(1): 590-598.
|
9. |
Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev, 2011, 21(4): 511-517.
|
10. |
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov, 2017, 16(3): 203-222.
|
11. |
Zheng J, Huang X, Tan W, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet, 2016, 48(7): 747-757.
|
12. |
Lu P, Wang F, Wu J, et al. Elevated serum miR-7, miR-9, miR-122, and miR-141 are noninvasive biomarkers of acute pancreatitis. Dis Markers, 2017, 2017: 7293459-7293466.
|
13. |
Liu P, Xia L, Zhang WL, et al. Identification of serum microRNAs as diagnostic and prognostic biomarkers for acute pancreatitis. Pancreatology, 2014, 14(3): 159-166.
|
14. |
Zhang Y, Yan L, Han W. Elevated level of miR-551b-5p is associated with inflammation and disease progression in patients with severe acute pancreatitis. Ther Apher Dial, 2018, [Epub ahead of print].
|
15. |
Zhang XX, Deng LH, Chen WW, et al. Circulating microRNA 216 as a marker for the early identification of severe acute pancreatitis. Am J Med Sci, 2017, 353(2): 178-186.
|
16. |
孙涛. 急性胰腺炎血浆 miRNAs 表达及 miR-494 调节胰腺腺泡细胞凋亡的机制研究. 上海: 第二军医大学, 2016.
|
17. |
Shi N, Deng L, Chen W, et al. Is microRNA-127 a novel biomarker for acute pancreatitis with lung injury? Dis Markers, 2017, 2017: 1204295-1204304.
|
18. |
Lu XG, Kang X, Zhan LB, et al. Circulating miRNAs as biomarkers for severe acute pancreatitis associated with acute lung injury. World J Gastroenterol, 2017, 23(41): 7440-7449.
|
19. |
Su Z, Yang Z, Xu Y, et al. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget, 2015, 6(11): 8474-8490.
|
20. |
李广博, 张淑君, 姚婕, 等. 程序性细胞死亡机制的研究进展. 现代生物医学进展, 2017, 17(35): 6992-6996.
|
21. |
Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, et al. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet, 2006, 2(10): 1518-1526.
|
22. |
Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology, 2011, 140(7): 2116-2125.
|
23. |
Nucera S, Giustacchini A, Boccalatte F, et al. miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia. Cancer Cell, 2016, 29(6): 905-921.
|
24. |
Qin T, Fu Q, Pan YF, et al. Expressions of miR-22 and miR-135a in acute pancreatitis. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(2): 225-233.
|
25. |
Fu Q, Qin T, Chen L, et al. miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene. World J Gastroenterol, 2016, 22(20): 4881-4890.
|
26. |
Buchan JR, Parker R. Molecular biology. The two faces of miRNA. Science, 2007, 318(5858): 1877-1878.
|
27. |
Peter ME. Programmed cell death: apoptosis meets necrosis. Nature, 2011, 471(7338): 310-312.
|
28. |
Galluzzi L, Kepp O, Krautwald S, et al. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol, 2014, 35: 24-32.
|
29. |
Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009, 325(5938): 332-336.
|
30. |
Ma X, Conklin DJ, Li F, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun, 2015, 6: 7151-7163.
|
31. |
Hu MX, Zhang HW, Fu Q, et al. Functional role of MicroRNA-19b in acinar cell necrosis in acute necrotizing pancreatitis. J Huazhong Univ Sci Technolog Med Sci, 2016, 36(2): 221-225.
|
32. |
Frankel LB, Di Malta C, Wen J, et al. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun, 2014, 5: 5840-5850.
|
33. |
Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology, 2014, 146(4): 1097-1107.
|
34. |
Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev, 2012, 249(1): 158-175.
|
35. |
Zhu H, Huang L, Zhu S, et al. Regulation of autophagy by systemic admission of microRNA-141 to target HMGB1 in l-arginine-induced acute pancreatitis in vivo. Pancreatology, 2016, 16(3): 337-346.
|
36. |
Yu C, Yu X, Zhu HW, et al. Expression pattern of HMGB1 and its association with autophagy in acute necrotizing pancreatitis. Mol Med Rep, 2016, 14(6): 5507-5513.
|
37. |
Wang D, Tang M, Zong P, et al. MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol, 2018, 9: 686-695.
|
38. |
Qian D, Wei G, Xu C, et al. Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Sci Rep, 2017, 7(1): 581-597.
|
39. |
Zhang J, Ning X, Cui W, et al. Transforming growth factor (TGF)-β-induced microRNA-216a promotes acute pancreatitis via Akt and TGF-β pathway in mice. Dig Dis Sci, 2015, 60(1): 127-135.
|
40. |
Tian R, Wang RL, Xie H, et al. Overexpressed miRNA-155 dysregulates intestinal epithelial apical junctional complex in severe acute pancreatitis. World J Gastroenterol, 2013, 19(45): 8282-8291.
|
41. |
Wu XM, Ji KQ, Wang HY, et al. MicroRNA-339-3p alleviates inflammation and edema and suppresses pulmonary microvascular endothelial cell apoptosis in mice with severe acute pancreatitis-associated acute lung injury by regulating Anxa3 via the Akt/mTOR signaling pathway. J Cell Biochem, 2018, 119(8): 6704-6714.
|
42. |
Song Z, Huang Y, Liu C, et al. miR-352 participates in the regulation of trypsinogen activation in pancreatic acinar cells by influencing the function of autophagic lysosomes. Oncotarget, 2018, 9(13): 10868-10879.
|
43. |
Ye X, Ding J, Chen Y, et al. Adenovirus-mediated artificial miRNA targeting fibrinogen-like protein 2 attenuates the severity of acute pancreatitis in mice. Biosci Rep, 2017, 37(6): BSR20170964.
|