1. |
Gumbs AA, Moore PS, Falconi M, et al. Review of the clinical, histological, and molecular aspects of pancreatic endocrine neoplasms. J Surg Oncol, 2002, 81(1): 45-53.
|
2. |
Manfredi R, Bonatti M, Mantovani W, et al. Non-hyperfunctioning neuroendocrine tumours of the pancreas: MR imaging appearance and correlation with their biological behaviour. Eur Radiol, 2013, 23(11): 3029-3039.
|
3. |
Cloyd JM, Poultsides GA. Non-functional neuroendocrine tumors of the pancreas: advances in diagnosis and management. World J Gastroenterol, 2015, 21(32): 9512-9525.
|
4. |
Wong KP, Tsang JS, Lang BH. Role of surgery in pancreatic neuroendocrine tumor. Gland Surg, 2018, 7(1): 36-41.
|
5. |
Lewis RB, Lattin GE Jr, Paal E. Pancreatic endocrine tumors: radiologic-clinicopathologic correlation. Radiographics, 2010, 30(6): 1445-1464.
|
6. |
Humphrey PE, Alessandrino F, Bellizzi AM, et al. Non-hyperfunctioning pancreatic endocrine tumors: multimodality imaging features with histopathological correlation. Abdom Imaging, 2015, 40(7): 2398-2410.
|
7. |
Kim JH, Eun HW, Kim YJ, et al. Pancreatic neuroendocrine tumour (PNET): staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma. Eur Radiol, 2016, 26(5): 1338-1347.
|
8. |
Lubner MG, Smith AD, Sandrasegaran K, et al. CT Texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503.
|
9. |
朱碧云, 陈卉. 医学图像纹理分析的方法及应用. 中国医学装备, 2013, 10(8): 77-81.
|
10. |
Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. Clin Radiol, 2004, 59(12): 1061-1069.
|
11. |
潘立阳. 原发性肝癌相关因素 1∶2 病例对照研究. 大连: 大连医科大学, 2008.
|
12. |
Szczypiński PM, Strzelecki M, Materka A, et al. MaZda-a software package for image texture analysis. Comput Methods Programs Biomed, 2009, 94(1): 66-76.
|
13. |
Yan L, Liu Z, Wang G, et al. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad Radiol, 2015, 22(9): 1115-1121.
|
14. |
任继亮, 吴颖为, 陶晓峰. 常规 MRI 纹理分析鉴别诊断眼眶淋巴瘤与炎性假瘤. 中国医学影像技术, 2017, 33(7): 980-984.
|
15. |
Chae HD, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology, 2014, 273(1): 285-293.
|
16. |
Dennie C, Thornhill R, Sethi-Virmani V, et al. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant Imaging Med Surg, 2016, 6(1): 6-15.
|
17. |
刘露, 吴霜, 伍兵. CT 图像纹理分析鉴别肝上皮样血管内皮瘤与结肠癌肝转移瘤的初步研究. 中国普外基础与临床杂志, 2018, 25(4): 483-487.
|
18. |
Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, et al. Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed, 2018, 159: 23-30.
|
19. |
Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One, 2014, 9(7): e100244.
|
20. |
Manuel-Vazquez A, Ramia JM, Latorre-Fragua R, et al. Pancreatic neuroendocrine tumors and intraductal papillary mucinous neoplasm of the pancreas: a systematic review. Pancreas, 2018, 47(5): 551-555.
|
21. |
Krishna SG, Li F, Bhattacharya A, et al. Differentiation of pancreatic ductal adenocarcinoma from other neoplastic solid pancreatic lesions: a tertiary oncology center experience. Gastrointest Endosc, 2015, 81(2): 370-379.
|
22. |
Takumi K, Fukukura Y, Higashi M, et al. Pancreatic neuroendocrine tumors: correlation between the contrast-enhanced computed tomography features and the pathological tumor grade. Eur J Radiol, 2015, 84(8): 1436-1443.
|
23. |
Luo Y, Dong Z, Chen J, et al. Pancreatic neuroendocrine tumours: correlation between MSCT features and pathological classification. Eur Radiol, 2014, 24(11): 2945-2952.
|
24. |
Worhunsky DJ, Krampitz GW, Poullos PD, et al. Pancreatic neuroendocrine tumours: hypoenhancement on arterial phase computed tomography predicts biological aggressiveness. HPB (Oxford), 2014, 16(4): 304-311.
|
25. |
Peeken JC, Bernhofer M, Wiestler B, et al. Radiomics in radiooncology-challenging the medical physicist. Phys Med, 2018, 48: 27-36.
|