1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl), 2016, 94(5): 509-522.
|
3. |
Cioffi M, Trabulo SM, Vallespinos M, et al. The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget, 2017, 8(13): 21609-21625.
|
4. |
Heery CR, O’Sullivan-Coyne G, Madan RA, et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol, 2017, 18(5): 587-598.
|
5. |
Overman MJ, Kopetz S, McDermott RS, et al. Nivolumab±ipilimumab in treatment (tx) of patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): CheckMate-142 interim results. J Clin Oncol, 2016, 34(15_suppl): 3501.
|
6. |
Brahmer JR, Drake CG, Wollner I, et al. Phase Ⅰ study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol, 2010, 28(19): 3167-3175.
|
7. |
Yamamoto N, Nokihara H, Yamada Y, et al. Phase Ⅰ study of Nivolumab, an anti-PD-1 antibody, in patients with malignant solid tumors. Invest New Drugs, 2017, 35(2): 207-216.
|
8. |
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol, 2017, 18(9): 1182-1191.
|
9. |
Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med, 2013, 369(11): 1023-1034.
|
10. |
Fumet JD, Isambert N, Hervieu A, et al. Phase Ⅰb/Ⅱ trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer. ESMO Open, 2018, 3(4): e000375.
|
11. |
Das S, Ciombor KK, Haraldsdottir S, et al. Promising new agents for colorectal cancer. Curr Treat Options Oncol, 2018, 19(6): 29.
|
12. |
Xu R, Xu C, Liu C, et al. Efficacy and safety of bevacizumab-based combination therapy for treatment of patients with metastatic colorectal cancer. Onco Targets Ther, 2018, 11: 8605-8621.
|
13. |
Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med, 2009, 360(14): 1408-1417.
|
14. |
Peeters M, Karthaus M, Rivera F, et al. Panitumumab in metastatic colorectal cancer: the importance of tumour RAS status. Drugs, 2015, 75(7): 731-748.
|
15. |
Nazemalhosseini-Mojarad E, Mohammadpour S, Torshizi Esafahani A, et al. Intratumoral infiltrating lymphocytes correlate with improved survival in colorectal cancer patients: Independent of oncogenetic features. J Cell Physiol, 2019, 234(4): 4768-4777.
|
16. |
Mlecnik B, Van den Eynde M, Bindea G, et al. Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J Natl Cancer Inst, 2018, 110(1).
|
17. |
Toh JWT, de Souza P, Lim SH, et al. The potential value of immunotherapy in colorectal cancers: review of the evidence for programmed death-1 inhibitor therapy. Clin Colorectal Cancer, 2016, 15(4): 285-291.
|
18. |
National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Colon Cancer, version 2.2017. [2017-06-20]. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp.
|
19. |
Bilgin B, Sendur MA, Bülent Akıncı M, et al. Targeting the PD-1 pathway: a new hope for gastrointestinal cancers. Curr Med Res Opin, 2017, 33(4): 749-759.
|
20. |
Le DT, Uram JN, Wang H. Programmed death- 1 blockade in mismatch repair deficient colorectal cancer. Chicago: ASCO Annual Meeting, 2016.
|
21. |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med, 2015, 372(26): 2509-2520.
|
22. |
Marginean EC, Melosky B. Is there a role for programmed death ligand-1 testing and immunotherapy in colorectal cancer with microsatellite instability? part Ⅱ—the challenge of programmed death ligand-1 testing and its role in microsatellite instability-high colorectal Cancer. Arch Pathol Lab Med, 2018, 142(1): 26-34.
|
23. |
Nebot-Bral L, Coutzac C, Kannouche PL, et al. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Bull Cancer, 2019, 106(2): 105-113.
|
24. |
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov, 2015, 5(1): 43-51.
|
25. |
Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev, 2014, 23(12): 2965-2970.
|
26. |
Lee LH, Cavalcanti MS, Segal NH, et al. Patterns and prognostic relevance of PD-1 and PD-L1 expression in colorectal carcinoma. Mod Pathol, 2016, 29(11): 1433-1442.
|
27. |
Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer, 2013, 49(9): 2233-2242.
|
28. |
Valentini AM, Di Pinto F, Cariola F, et al. PD-L1 expression in colorectal cancer defines three subsets of tumor immune microenvironments. Oncotarget, 2018, 9(9): 8584-8596.
|
29. |
Smith KM, Desai J. Nivolumab for the treatment of colorectal cancer. Expert Rev Anticancer Ther, 2018, 18(7): 611-618.
|
30. |
Ott PA, Hodi FS, Kaufman HL, et al. Combination immunotherapy: a road map. J Immunother Cancer, 2017, 5: 16.
|
31. |
Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell, 2017, 170(6): 1120-1133.
|
32. |
Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol, 2018, 36(8): 773-779.
|
33. |
Jindal V. Immune checkpoint inhibitors in gastrointestinal malignancies. J Gastrointest Oncol, 2018, 9(2): 390-403.
|
34. |
Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med, 2017, 377(14): 1345-1356.
|
35. |
Tapia Rico G, Price TJ. Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential. Expert Opin Biol Ther, 2018, 18(4): 449-457.
|
36. |
Wang CY, Thudium KB, Han MH, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res, 2014, 2(9): 846-856.
|
37. |
Dovedi SJ, Illidge TM. The antitumor immune response generated by fractionated radiation therapy may be limited by tumor cell adaptive resistance and can be circumvented by PD-L1 blockade. Oncoimmunology, 2015, 4(7): e1016709.
|
38. |
Pfirschke C, Engblom C, Rickelt S, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity, 2016, 44(2): 343-354.
|
39. |
Vincent J, Mignot G, Chalmin F, et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res, 2010, 70(8): 3052-3061.
|
40. |
Bruchard M, Mignot G, Derangère V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med, 2013, 19(1): 57-64.
|
41. |
Dosset M, Vargas TR, Lagrange A, et al. PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology, 2018, 7(6): e1433981.
|
42. |
Safi Shahda AM. A phase Ⅱ study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer. J Clin Oncol, 2017, 35(15_suppl): 3541.
|