1. |
Chen W, Zheng R, Zhang S, et al. Cancer incidence and mortality in China in 2013: an analysis based on urbanization level. Chin J Cancer Res, 2017, 29(1): 1-10.
|
2. |
Carrato A, Falcone A, Ducreux M, et al. A systematic review of the burden of pancreatic cancer in Europe: real-world impact on survival, quality of life and costs. J Gastrointest Cancer, 2015, 46(3): 201-211.
|
3. |
Eser S, Schnieke A, Schneider G, et al. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer, 2014, 111(5): 817-822.
|
4. |
Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell, 2017, 32(2): 185-203.
|
5. |
Tsai FD, Lopes MS, Zhou M, et al. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci U S A, 2015, 112(3): 779-784.
|
6. |
O’Bryan JP. Pharmacological targeting of RAS: recent success with direct inhibitors. Pharmacol Res, 2019, 139: 503-511.
|
7. |
Kanda M, Matthaei H, Wu J, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology, 2012, 142(4): 730-733.
|
8. |
Hashimoto D, Arima K, Yokoyama N, et al. Heterogeneity of KRAS mutations in pancreatic ductal adenocarcinoma. Pancreas, 2016, 45(8): 1111-1114.
|
9. |
Brychta N, Krahn T, von Ahsen O. Detection of KRAS mutations in circulating tumor DNA by digital PCR in early stages of pancreatic cancer. Clin Chem, 2016, 62(11): 1482-1491.
|
10. |
Gruber R, Panayiotou R, Nye E, et al. YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology, 2016, 151(3): 526-539.
|
11. |
Tao LY, Zhang LF, Xiu DR, et al. Prognostic significance of K-ras mutations in pancreatic cancer: a meta-analysis. World J Surg Oncol, 2016, 14: 146.
|
12. |
Bournet B, Buscail C, Muscari F, et al. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities. Eur J Cancer, 2016, 54: 75-83.
|
13. |
Qiu W, Tang SM, Lee S, et al. Loss of activin receptor type 1B accelerates development of intraductal papillary mucinous neoplasms in mice with activated KRAS. Gastroenterology, 2016, 150(1): 218-228.
|
14. |
Huang H, Daniluk J, Liu Y, et al. Oncogenic K-Ras requires activation for enhanced activity. Oncogene, 2014, 33(4): 532-535.
|
15. |
Roskoski R Jr. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol Res, 2018, 135: 239-258.
|
16. |
Ritt DA, Abreu-Blanco MT, Bindu L, et al. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol Cell, 2016, 64(5): 875-887.
|
17. |
Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol, 2015, 16(5): 281-298.
|
18. |
Gysin S, Lee SH, Dean NM, et al. Pharmacologic inhibition of RAF->MEK->ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res, 2005, 65(11): 4870-4880.
|
19. |
Campbell PM, Groehler AL, Lee KM, et al. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res, 2007, 67(5): 2098-2106.
|
20. |
Collisson EA, Trejo CL, Silva JM, et al. A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov, 2012, 2(8): 685-693.
|
21. |
Gasparri ML, Besharat ZM, Farooqi AA, et al. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. J Cancer Res Clin Oncol, 2018, 144(12): 2313-2318.
|
22. |
Papadimitrakopoulou V. Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer. J Thorac Oncol, 2012, 7(8): 1315-1326.
|
23. |
Baer R, Cintas C, Therville N, et al. Implication of PI3K/Akt pathway in pancreatic cancer: when PI3K isoforms matter? Adv Biol Regul, 2015, 59: 19-35.
|
24. |
Eser S, Reiff N, Messer M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell, 2013, 23(3): 406-420.
|
25. |
Mao Y, Xi L, Li Q, et al. Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via Polo-like kinase 1. Oncol Rep, 2016, 36(1): 49-56.
|
26. |
Yoshizawa R, Umeki N, Yanagawa M, et al. Single-molecule fluorescence imaging of RalGDS on cell surfaces during signal transduction from Ras to Ral. Biophys Physicobiol, 2017, 14: 75-84.
|
27. |
Kashatus DF. Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res, 2013, 319(15): 2337-2342.
|
28. |
Guin S, Ru Y, Wynes MW, et al. Contributions of KRAS and RAL in non-small-cell lung cancer growth and progression. J Thorac Oncol, 2013, 8(12): 1492-1501.
|
29. |
Lim KH, Baines AT, Fiordalisi JJ, et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell, 2005, 7(6): 533-545.
|
30. |
Cicenas J, Kvederaviciute K, Meskinyte I, et al. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 mutations in pancreatic cancer. Cancers (Basel), 2017, 9(5): E42.
|
31. |
Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet, 2016, 388(10039): 73-85.
|
32. |
Mohammed S, Van Buren G 2nd, Fisher WE. Pancreatic cancer: advances in treatment. World J Gastroenterol, 2014, 20(28): 9354-9360.
|
33. |
Yuan TL, Fellmann C, Lee CS, et al. Development of siRNA payloads to target KRAS-mutant cancer. Cancer Discov, 2014, 4(10): 1182-1197.
|
34. |
Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659): 498-503.
|
35. |
McCormick F. K-Ras protein as a drug target. J Mol Med (Berl), 2016, 94(3): 253-258.
|
36. |
Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer, 2017, 17(11): 676-691.
|
37. |
Martin S, Dudek-Perić AM, Maes H, et al. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol, 2015, 93(3): 290-304.
|
38. |
Peng SB, Henry JR, Kaufman MD, et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell, 2015, 28(3): 384-398.
|
39. |
Zhao X, Wang X, Fang L, et al. A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer. Cancer Lett, 2017, 402: 61-70.
|
40. |
Yen I, Shanahan F, Merchant M, et al. Pharmacological induction of RAS-GTP confers RAF inhibitor sensitivity in KRAS mutant tumors. Cancer Cell, 2018, 34(4): 611-625.
|
41. |
Bodoky G, Timcheva C, Spigel DR, et al. A phase Ⅱ open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244[ARRY-142886] ) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest New Drugs, 2012, 30(3): 1216-1223.
|
42. |
Wang T, Wei J, Wang N, et al. The glucosylceramide synthase inhibitor PDMP sensitizes pancreatic cancer cells to MEK/ERK inhibitor AZD-6244. Biochem Biophys Res Commun, 2015, 456(3): 821-826.
|
43. |
Burmi RS, Maginn EN, Gabra H, et al. Combined inhibition of the PI3K/mTOR/MEK pathway induces Bim/Mcl-1-regulated apoptosis in pancreatic cancer cells. Cancer Biol Ther, 2019, 20(1): 21-30.
|
44. |
Kutkowska J, Strzadala L, Rapak A. Sorafenib in combination with betulinic acid synergistically induces cell cycle arrest and inhibits clonogenic activity in pancreatic ductal adenocarcinoma cells. Int J Mol Sci, 2018, 19(10): E3234.
|
45. |
Lopez NE, Prendergast C, Lowy AM. Borderline resectable pancreatic cancer: definitions and management. World J Gastroenterol, 2014, 20(31): 10740-10751.
|