1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Gadi VK, Davidson NE. Practical approach to triple-negative breast cancer. J Oncol Pract, 2017, 13(5): 293-300.
|
3. |
Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet, 2016, 293(2): 247-269.
|
4. |
Denkert C, Liedtke C, Tutt A, et al. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet, 2017, 389(10087): 2430-2442.
|
5. |
Elsawaf Z, Sinn HP. Triple-negative breast cancer: clinical and histological correlations. Breast Care (Basel), 2011, 6(4): 273-278.
|
6. |
Feng X, Wang Z, Fillmore R, et al. MiR-200, a new star miRNA in human cancer. Cancer Lett, 2014, 344(2): 166-173.
|
7. |
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043): 834-838.
|
8. |
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 2009, 10(10): 704-714.
|
9. |
Mekala JR, Naushad SM, Ponnusamy L, et al. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene, 2018, 641: 248-258.
|
10. |
Liu C, Hu W, Li LL, et al. Roles of miR-200 family members in lung cancer: more than tumor suppressors. Future Oncol, 2018, 14(27): 2875-2886.
|
11. |
Koutsaki M, Libra M, Spandidos DA, et al. The miR-200 family in ovarian cancer. Oncotarget, 2017, 8(39): 66629-66640.
|
12. |
Ding M, Zhang T, Li S, et al. Correlation analysis between liver metastasis and serum levels of miR-200 and miR-141 in patients with colorectal cancer. Molecular Medicine Reports, 2017, 16(5): 7791-7795.
|
13. |
赵英安, 李福军. microRNA在肝癌复发转移中的研究进展. 中国普外基础与临床杂志, 2018, 25(11): 1403-1407.
|
14. |
Knezevic J, Pfefferle AD, Petrovic I, et al. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene, 2015, 34(49): 5997-6006.
|
15. |
Dehaini H, Awada H, El-Yazbi A, et al. MicroRNAs as potential pharmaco-targets in ischemia-reperfusion injury compounded by diabetes. Cells, 2019, 8(2): E152.
|
16. |
Sankrityayan H, Kulkarni YA, Gaikwad AB. Diabetic nephropathy: the regulatory interplay between epigenetics and microRNAs. Pharmacol Res, 2019, 141: 574-585.
|
17. |
Fariyike B, Singleton Q, Hunter M, et al. Role of microRNA-141 in the aging musculoskeletal system: a current overview. Mech Ageing Dev, 2019, 178: 9-15.
|
18. |
Maleki S, Cottrill KA, Poujade FA, et al. The mir-200 family regulates key pathogenic events in ascending aortas of individuals with bicuspid aortic valves. J Intern Med, 2019, 285(1): 102-114.
|
19. |
Mehta SJ, Lewis A, Nijhuis A, et al. Epithelial down-regulation of the miR-200 family in fibrostenosing Crohn’s disease is associated with features of epithelial to mesenchymal transition. J Cell Mol Med, 2018, 22(11): 5617-5628.
|
20. |
Braicu C, Chiorean R, Irimie A, et al. Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev Mol Med, 2016, 18: e18.
|
21. |
D’Ippolito E, Plantamura I, Bongiovanni L, et al. miR-9 and miR-200 Regulate PDGFRβ-mediated endothelial differentiation of tumor cells in triple-negative breast cancer. Cancer Res, 2016, 76(18): 5562-5572.
|
22. |
刘棣, 张寅斌, 闫婉君, 等. miR-200b对三阴性乳腺癌细胞MDA-MB-231的负性调控作用. 西安交通大学学报: 医学版, 2018, 39(5): 743-746.
|
23. |
Zhang DD, Li Y, Xu Y, et al. Phosphodiesterase 7B/microRNA-200c relationship regulates triple-negative breast cancer cell growth. Oncogene, 2019, 38(7): 1106-1120.
|
24. |
Li D, Wang H, Song H, et al. The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget, 2017, 8(49): 85276-85289.
|
25. |
Goossens S, Vandamme N, Van Vlierberghe P, et al. EMT transcription factors in cancer development re-evaluated: beyond EMT and MET. Biochim Biophys Acta Rev Cancer, 2017, 1868(2): 584-591.
|
26. |
Zhang G, Li H, Sun R, et al. Long non-coding RNA ZEB2-AS1 promotes the proliferation, metastasis and epithelial mesenchymal transition in triple-negative breast cancer by epigenetically activating ZEB2. J Cell Mol Med, 2019, 23(5): 3271-3279.
|
27. |
Cho ES, Kang HE, Kim NH, et al. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res, 2019, 42(1): 14-24.
|
28. |
Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci, 2010, 101(2): 293-299.
|
29. |
Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer, 2013, 132(4): 745-754.
|
30. |
Damiano V, Brisotto G, Borgna S, et al. Epigenetic silencing of miR-200c in breast cancer is associated with aggressiveness and is modulated by ZEB1. Genes Chromosomes Cancer, 2017, 56(2): 147-158.
|
31. |
Rogers TJ, Christenson JL, Greene LI, et al. Reversal of triple-negative breast cancer EMT by miR-200c decreases tryptophan catabolism and a program of immunosuppression. Mol Cancer Res, 2019, 17(1): 30-41.
|
32. |
Pang Y, Liu J, Li X, et al. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J Cell Mol Med, 2018, 22(12): 6262-6274.
|
33. |
Tsouko E, Wang J, Frigo DE, et al. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis, 2015, 36(9): 1051-1060.
|
34. |
Humphries B, Wang Z, Oom AL, et al. MicroRNA-200b targets protein kinase Cα and suppresses triple-negative breast cancer metastasis. Carcinogenesis, 2014, 35(10): 2254-2263.
|
35. |
King JL, Zhang B, Li Y, et al. TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis, 2018, 7(9): 69.
|
36. |
Erturk E, Cecener G, Tezcan G, et al. BRCA mutations cause reduction in miR-200c expression in triple negative breast cancer. Gene, 2015, 556(2): 163-169.
|
37. |
Choi SK, Kim HS, Jin T, et al. Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A. BMC Cancer, 2016, 16: 570.
|
38. |
Jin T, Suk Kim H, Ki Choi S, et al. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget, 2017, 8(20): 32769-32782.
|
39. |
李小丽, 蔡永青, 周维英. 三阴性乳腺癌化疗及放疗增敏作用研究进展. 中国临床药理学与治疗学, 2019, 24(3): 337-342.
|
40. |
Piasecka D, Braun M, Kordek R, et al. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol, 2018, 144(8): 1401-1411.
|
41. |
Hossain F, Sorrentino C, Ucar DA, et al. Notch signaling regulates mitochondrial metabolism and NF-κB activity in triple-negative breast cancer cells via IKKα-dependent non-canonical pathways. Front Oncol, 2018, 8: 575.
|
42. |
Li CY, Miao KL, Chen Y, et al. Jagged2 promotes cancer stem cell properties of triple negative breast cancer cells and paclitaxel resistance via regulating microRNA-200. Eur Rev Med Pharmacol Sci, 2018, 22(18): 6008-6014.
|
43. |
张金花, 杨碎胜, 司婧. 乳腺癌放疗增敏与机制研究进展. 中华肿瘤防治杂志, 2019, 26(4): 277-284.
|
44. |
Sun Q, Liu T, Yuan Y, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer, 2015, 136(5): 1003-1012.
|
45. |
詹军芳, 谢国柱. miR-200c对三阴乳腺癌细胞株MDA-MB-231放疗敏感性的影响. 广东医学, 2016, 37(1): 52-54.
|
46. |
Hamam R, Hamam D, Alsaleh KA, et al. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis, 2017, 8(9): e3045.
|
47. |
Yu X, Liang J, Xu J, et al. Identification and validation of circulating microRNA signatures for breast cancer early detection based on large scale tissue-derived data. J Breast Cancer, 2018, 21(4): 363-370.
|
48. |
Niedźwiecki S, Piekarski J, Szymańska B, et al. Serum levels of circulating miRNA-21, miRNA-10b and miRNA-200c in triple-negative breast cancer patients. Ginekol Pol, 2018, 89(8): 415-420.
|
49. |
Papadaki C, Stoupis G, Tsalikis L, et al. Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget, 2019, 10(9): 966-981.
|
50. |
Papadaki C, Stratigos M, Markakis G, et al. Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res, 2018, 20(1): 72.
|
51. |
Swellam M, Zahran RFK, Abo El-Sadat Taha H, et al. Role of some circulating MiRNAs on breast cancer diagnosis. Arch Physiol Biochem, 2018, [Epub ahead of print].
|
52. |
Madhavan D, Peng C, Wallwiener M, et al. Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis, 2016, 37(5): 461-470.
|
53. |
Rodríguez-Martínez A, de Miguel-Pérez D, Ortega FG, et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res, 2019, 21(1): 21.
|
54. |
Senfter D, Madlener S, Krupitza G, et al. The microRNA-200 family: still much to discover. Biomol Concepts, 2016, 7(5-6): 311-319.
|