1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Chen W, Zheng R, Baade P D, et al. Cancer statistics in China, 2015. Ca Cancer J Clin, 2016, 66(2): 115-132.
|
3. |
Rak R, Kloog Y. Targeting LIM kinase in cancer and neurofibromatosis. Cell Cycle, 2014, 13(9): 1360-1361.
|
4. |
Mardilovich K, Baugh M, Crighton D, et al. LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation. Oncotarget, 2015, 6(36): 38469-38486.
|
5. |
Prunier C, Josserand V, Vollaire J, et al. LIM kinase inhibitor Pyr1 reduces the growth and metastatic load of breast cancers. Cancer Res, 2016, 76(12): 3541-3552.
|
6. |
Yang N, Higuchi O, Ohashi K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 1998, 393(6687): 809-812.
|
7. |
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res, 2014, 28(5): 656-672.
|
8. |
Davila M, Jhala D, Ghosh D, et al. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer. Mol Cancer, 2007, 6: 40.
|
9. |
Vallée B, Cuberos H, Doudeau M, et al. LIMK2-1, a new isoform of human LIMK2, regulates actin cytoskeleton remodeling via a different signaling pathway than that of its two homologs, LIMK2a and LIMK2b. Biochem J, 2018, 475(23): 3745-3761.
|
10. |
Shahi P, Wang CY, Chou J, et al. GATA3 targets semaphorin 3B in mammary epithelial cells to suppress breast cancer progression and metastasis. Oncogene, 2017, 36(40): 5567-5575.
|
11. |
Meyer-Lindenberg A, Mervis CB, Sarpal D, et al. Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. J Clin Invest, 2005, 115(7): 1888-1895.
|
12. |
Chen S, Auletta T, Dovirak O, et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther, 2008, 7(11): 1793-1802.
|
13. |
Hao C, Huang W, Li X, et al. Development of 2,4-diaminoquinazoline derivatives as potent PAK4 inhibitors by the core refinement strategy. Eur J Med Chem, 2017, 131: 1-13.
|
14. |
Cai S, Ye Z, Wang X, et al. Overexpression of P21-activated kinase 4 is associated with poor prognosis in non-small cell lung cancer and promotes migration and invasion. J Exp Clin Cancer Res, 2015, 34: 48.
|
15. |
Rudolph J, Crawford JJ, Hoeflich KP, et al. Inhibitors of p21-activated kinases (PAKs). J Med Chem, 2015, 58(1): 111-129.
|
16. |
Li D, Zhang Y, Li Z, et al. Activated Pak4 expression correlates with poor prognosis in human gastric cancer patients. Tumour Biol, 2015, 36(12): 9431-9436.
|
17. |
Kidera Y, Tsubaki M, Yamazoe Y, et al. Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil-containing protein kinase pathway. J Exp Clin Cancer Res, 2010, 29: 127.
|
18. |
Yan J, Pan Y1, Zheng X, et al. Comparative study of ROCK1 and ROCK2 in hippocampal spine formation and synaptic function. Neurosci Bull, 2019, 35(4): 649-660.
|
19. |
Zhang Y, Li A, Shi J, et al. Imbalanced LIMK1 and LIMK2 expression leads to human colorectal cancer progression and metastasis via promoting β-catenin nuclear translocation. Cell Death Dis, 2018, 9(7): 749.
|
20. |
Aggelou H, Chadla P, Nikou S, et al. LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and chemoresistance. Virchows Arch, 2018, 472(5): 727-737.
|
21. |
Lourenço FC, Munro J, Brown J, et al. Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation. Gut, 2014, 63(3): 480-493.
|
22. |
Sousa-Squiavinato ACM, Rocha MR, Barcellos-de-Souza P, et al. Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. Biochim Biophys Acta Mol Cell Res, 2019, 1866(3): 418-429.
|
23. |
Frampton M, Houlston RS. Modeling the prevention of colorectal cancer from the combined impact of host and behavioral risk factors. Genet Med, 2017, 19(3): 314-321.
|
24. |
惠鹏, 刘连新, 梁英健. 结直肠癌肝转移的分子机制研究进展. 中国普外基础与临床杂志, 2019, 26(6): 758-763.
|
25. |
Liao Q, Li R, Zhou R, et al. LIM kinase 1 interacts with myosin-9 and alpha-actinin-4 and promotes colorectal cancer progression. Br J Cancer, 2017, 117(4): 563-571.
|
26. |
Su J, Zhou Y, Pan Z, et al. Downregulation of LIMK1-ADF/cofilin by DADS inhibits the migration and invasion of colon cancer. Sci Rep, 2017, 7: 45624.
|
27. |
Min JS, Kim JC, Kim JA, et al. SIRT2 reduces actin polymerization and cell migration through deacetylation and degradation of HSP90. Biochim Biophys Acta Mol Cell Res, 2018, 1865(9): 1230-1238.
|
28. |
Wang W, Yang C, Nie H, et al. LIMK2 acts as an oncogene in bladder cancer and its functional SNP in the microRNA-135a binding site affects bladder cancer risk. Int J Cancer, 2019, 144(6): 1345-1355.
|
29. |
Zhou Y, Su J, Shi L, et al. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion. Oncol Rep, 2013, 29(2): 605-612.
|
30. |
Prunier C, Prudent R, Kapur R, et al. LIM kinases: cofilin and beyond. Oncotarget, 2017, 8(25): 41749-41763.
|
31. |
Song S, Li X, Guo J, et al. Design, synthesis and biological evaluation of 1-phenanthryl-tetrahydroisoquinoline derivatives as novel p21-activated kinase 4 (PAK4) inhibitors. Org Biomol Chem, 2015, 13(12): 3803-3818.
|
32. |
Hao C, Li X, Song S, et al. Advances in the 1-phenanthryl-tetrahydroisoquinoline series of PAK4 inhibitors: potent agents restrain tumor cell growth and invasion. Org Biomol Chem, 2016, 14(32): 7676-7690.
|
33. |
Ohashi K, Sampei K, Nakagawa M, et al. Damnacanthal, an effective inhibitor of LIM-kinase, inhibits cell migration and invasion. Mol Biol Cell, 2014, 25(6): 828-840.
|
34. |
Nguyen BC, Taira N, Maruta H, et al. Artepillin C and other herbal PAK1-blockers: Effects on hair cell proliferation and related PAK1-dependent biological function in cell culture. Phytother Res, 2016, 30(1): 120-127.
|
35. |
Song H, Wang Y, Li L, et al. Cucurbitacin E inhibits proliferation and migration of intestinal epithelial cells via activating cofilin. Front Physiol, 2018, 9: 1090.
|
36. |
Sari-Hassoun M, Clement MJ, Hamdi I, et al. Cucurbitacin Ⅰ elicits the formation of actin/phospho-myosin Ⅱ co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase. Biochem Pharmacol, 2016, 102: 45-63.
|
37. |
Park JB, Agnihotri S, Golbourn B, et al. Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-cofilin pathway. Oncotarget, 2014, 5(19): 9382-9395.
|
38. |
Harrison BA, Almstead ZY, Burgoon H, et al. Discovery and development of LX7101, a dual LIM-kinase and ROCK inhibitor for the treatment of glaucoma. ACS Med Chem Lett, 2014, 6(1): 84-88.
|
39. |
Rak R, Haklai R, Elad-Tzfadia G, et al. Novel LIMK2 inhibitor blocks Panc-1 tumor growth in a mouse xenograft model. Oncoscience, 2014, 1(1): 39-48.
|